LINE OF POSTTION BOOK

FOURTH EDITION
ully dedicated to my father-in-law:
THACKRAX, C. E.
F. Durand, distinguished graduate of the

I the engineers of the country."

BY
Ligumanant Commander P. V. H. WEEMS, E. S. Navy

CONTENTS
Subject
ARC TO TBEE CONVERSTON TABLE..................................... 1
ALTITUDE CORRECTIONS FOR STARS AND PLANETS......... 1
SUN ALTITUDE CORRECTION TABLE.............................. 2
MOON ALIITUDE CORRECTION TABLES-MARINE SEXTANT 3-4
MOON ALTITUDE CORRECTIOX TABLES-BUBBLE SEXTANT 5
BEBBLE SEXTANT CORRECTION FOR EARTH'S ROTATION.. 6
REFRACIION SUB-CORRECTION FOR HIGH ALTITUDES....... 6
EXPLANATION OF METHOD .. v
METEIOD OF SOLUTION vi
AZIMUTH COMPUTED BY TABLE B................................ vif
SAMPLE PROBLEMS vir, viii
TYPICAL PROBLEMS-MARINE NAVIGATION 7-8
SUN LTNES OF POSETION WORKED IN THE AIR 9 - 10
TABLE A... 11-28
TAHLE B 29-34
POLAR TABLES $38-19$
AYIATOR'S SPEED-TIME-DISTANCE TABLE...................... 50
AVLATOR'S COURSE CORRECTION TABLE...................... i. . 51
TABLE OF DISTANCES BY VERTICAL ANGLE 51
HOUR ANGLE OF BODY ON PRIME VERTICAL-DLAGRAM... 52
RUST'S MODIFIED AZIMUTH DIAGRAM-IEFT HALF......... $53-54$
RUST'S MODIFIED AZTMUTH DLAGRAM-RIGHT HALF....... 55-56

Copvniart, 1927, 1928
n. U. S. NAVAL INSTITUTE,

Alosapotz5, Marklaks

Cоруинен, 1940,1943
BY WEEMS SXSTEM OE NAVIGATION
Amapotis, Jxaylum

Cocaposed, Brined ond Rewed hy ni Eade Prow
Grouse Banta Polenanino Conourt
Meralk, Wiemtiat

TABLEA

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{\(25^{\circ}\left(2{ }^{\text {a }} 33^{\text {mim }}\right.\) ）} \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{\(25^{3}\)（ \(\mathrm{I}^{\mathrm{h}} 4^{\text {mm）}}\)} \\
\hline \& A \& K \& A \& K \& A \& K \& A \& T \& A \& \\
\hline ： \& 2985 \& \[
\text { o } 0.0
\] \& 3283 \& 0 as \& \& \(\therefore\) as \& \& \& \& \\
\hline 1 \& 2984 \& 1 4．5 \& \({ }_{325}{ }^{5}\) \& 184 \& 3995 \& 15.2 \& 3927 \& \& 43272 \& \\
\hline 2 \& 2581 \& 285 \& 379 \& 3.4 \& 3593 \& 2104 \& 30.38 \& 811.3 \& 426 \& 218.4 \\
\hline 5 \& 29.76 \& \({ }^{5} 12.8\) \& 3274 \& 3814.1 \& 358\％ \& 3153 \& 3925 \& 317.0 \& 4250 \& 318.1 \\
\hline 5 \& 20.69 \& 417.0
51.2 \& 3266 \& \begin{tabular}{ll}
4 \& 18.8 \\
5 \& 28.4 \\
\hline
\end{tabular} \& 3578 \& 420.6 \& 3 3 906 \& 422.6 \& 4350 \& 484.7 \\
\hline 6 \& 2930 \& 625.4 \& 3245 \& 628.0 \& \& \& \& \({ }^{6} 58588\) \& 4237 \& \＄80．6 \\
\hline 7 \& 29.38 \& 729.8 \& \(3 \times 30\) \& 782.6 \& 35 \& 580.8
735.9 \& 3850
3863 \& 688.8
7598 \& 4 \& 688.9 \\
\hline 8 \& \(2 y / 3\) \& 88.7 \& 3214 \& 887.1 \& 3522 \& 830.8 \& \({ }_{3} 3063\) \& 739.3
8.44 .8 \& 4303
4150 \& 42， 8.9 \\
\hline 9 \& \(39 \%\) \& 937.7 \& 3197 \& 241.6 \& 3500 \& \& \(3^{192}\) \& \({ }_{2} 50.1\) \& \& 848.9
984.8 \\
\hline 10 \& 2889 \& 1041.7 \& 3177 \& 1046.1 \& 3480 \& \({ }^{10} 58.6\) \& 3795 \& \({ }^{9} 10.50 .5\) \& 4157
485
48 \& 8 \\
\hline 11 \& 8 \& 1148.7 \& 3154 \& 1180.4 \& 3453 \& 1155.4 \& 3771 \& \[
18 \quad 0.7
\] \& 4101 \& \(12 \quad 6.8\) \\
\hline 12 \& 46 \& 12 4，6 \& 3150 \& 1254.7 \& 3425 \& is 0.1 \& 3741 \& 13 569 \& 4068 \& is 15． \\
\hline 18 \& 2323 \& 1358.4 \& 3104 \& 1358.9 \& 3400 \& 14.4 .8 \& 3709 \& 14 10．9 \& 4034 \& 14 17．010 \\
\hline 14 \& 2798 \& 1457.2 \& 3076 \& 158.1 \& 3369 \& 150.3 \& 3676 \& 15150.9 \& 3997 \& 148889，8 \\
\hline 15 \& 2771 \& 1680.9 \& 30．n \& 167.1 \& 2335 \& 16 13．8 \& 264a \& if 20.8 \& 3957 \& 17828.9 \\
\hline 16 \& \({ }^{2743}\) \& \(17 \quad 4.5\) \& 3015 \& 1717.1 \& 3302 \& 1718.1 \& 3 3 ¢ \({ }^{\text {a }}\) \& 1725.6 \& 35 ¢6\％ \& 1788.4 \\
\hline 17 \& 2713 \& \(18 \quad 8.0\) \& \(29 \mathrm{B3}\) \& 1818.0 \& 3265 \& 18 22．4 \& 3563 \& 1830.2 \& 3873 \& 1838.5 \\
\hline 18 \& 2681 \& 1911.4 \& 2948 \& 19 18．7 \& 3227 \& 19.28 .5 \& 3500 \& 1934,8 \& 3327 \& 19 43，4 \\
\hline 19
20 \& 3645 \& 2014.7 \& 2915 \& 2022,4 \& 3187 \& 2030.5 \& 3770 \& 2030.1 \& 3728 \& 20 68．2 \\
\hline 29 \& 2614 \& 21 180 \& 2373 \& \({ }_{21} 28.0\) \& 3245 \& 2134.4 \& 3430 \& 2148.4 \& 3727 \& \({ }_{21}^{20} 52.8\) \\
\hline 31 \& \({ }^{3}\) \& 2221.1 \& 2833 \& 29294 \& 3101 \& 2238.2 \& 338 F \& 2242.5 \& \(35 \% 4\) \& 2257.3 \\
\hline 22 28 \& 2540
2301 \& \({ }^{28} 24.1\) \& 2791 \& 2532.7 \& 3055 \& 2341.8 \& 3335 \& 2351.6 \& 3619 \& 24 1．8 \\
\hline 31 \& 2404 \& －\({ }^{28} 82780\) \& 2743
2704 \& 2435.9 \& 3507 \& 24 45，3 \& 3279 \& 2455.3 \& 3553 \& 25 58 \\
\hline 25 \& a＜21 \& 2652.5 \& 2659 \& 2838． 41.8 \& 2959 \& \({ }_{26}^{25} 481.7\) \& 3226
3175 \& \(\begin{array}{ll}45 \& 58.0 \\ 97 \& 8.0\end{array}\) \& 3505 \& 26 98） \\
\hline \({ }^{\text {a }}\) \& 2379 \& 273500 \& 2313 \& 2744.7 \& 2855 \& 27 35．0 \& 3115 \& \& \& 27.18 .5 \\
\hline 27 \& 2336 \& 2587.5 \& 2563 \& 2847.4 \& 2805 \& 2857.0 \& 3058 \& \(29 \quad 90\) \& 3330 \& 28
2888
88.7 \\
\hline 28 \& 22191 \& \& 3515 \& 28.4343 \& 2258 \& zo a． \& 2999 \& 30120 \& 3355 \& \({ }_{30} 88238\) \\
\hline 89 \& 2245 \& 30420 \& 3465 \& 3052.8 \& 2697 \& 3188.5 \& 2039 \& 31.14 .9 \& 3190 \& 5127.8 \\
\hline \＄0 \& cr99 \& \＄1 44，0 \& 2415 \& 31 SL． 8 \& 2641 \& \(32 \quad 5.8\) \& 12877 \& 32.17 .5 \& 3123 \& 38298 \\
\hline \[
\frac{81}{32}
\] \& 2 grg
2
2 n 4 \& 32 959 \& 2363 \& 32 56.7 \& \(2{ }^{238}\) \& 38 su \& 2834 \& 35200 \& 3055 \& 8532.0 \\
\hline 硡 \& 2056 \& \({ }_{3} 588.4\) \& 23106 \& 8588.7 \& 2375 \& 3410.9 \& a751 \& 34225 \& 7985 \& 3435.1 \\
\hline 34 \& 2007 \& \(35 \quad 50.9\) \& 2202 \& \begin{tabular}{lll}
38 \& 2.1 \\
\hline 1
\end{tabular} \& 2407 \& \& 26812 \& 3524.5
36264
3724 \& 2815 \& 3587.4 \\
\hline 35 \& 1958 \& \＄6 62.3 \& 3148 \& 37.86 \& 33， 2 \& 37150 \& 1555 \& 3728.1 \& 377 \& \({ }_{37} 8681.3\) \\
\hline \({ }^{36}\) \& 1907 \& 3755.5 \& 2093 \& 384.9 \& 2985 \& 381780 \& 2488 \& 5829.7 \& 2699 \& 3845.0 \\
\hline 88 \& 2856 \& 3854,5 \& 2076 \& \(59 \quad 8,1\) \& 2325 \& 3918.3 \& 2425 \& 33 3 1.1 \& 26,25 \& 38.44 .5 \\
\hline \({ }^{88}\) \& 1805

754 \& ${ }^{39} 56.5$ \& T980 \& $40 \quad 7.1$ \& 2163 \& 40194 \& 2354 \& 4082.3 \& 2353 \& 4045.8 \\
\hline 40 \& ${ }_{1702}$ \& 4158,9 \& 123 \& $\begin{array}{lll}41 & 8.0 \\ 42 & 8.7\end{array}$ \& 2108 \& 41203 \& 2235 \& 4135.3 \& 242 \& 4148.8 \\
\hline 41 \& 1650 \& 4237.4 \& ${ }^{18009}$ \& 48.282 \& \& ${ }^{43} 821.5$ \& \& $\frac{4284.0}{43} 3$ \& 2393 \& 42 47.78 \\
\hline 48 \& ${ }^{1598}$ \& 43.57 .8 \& 1750 \& 4480.6 \& 1953 \& 4422.0 \& 2581 \& 44850.1 \& 2353 \& 49488．8 \\
\hline 43 \& 1546 \& 4458.1 \& 1694 \& $45 \quad 8.8$ \& 1850 \& 4522.3 \& 2012 \& 4535.3 \& 2×81 \& 45850 \\
\hline 44 \& 1493 \& 45 先， 1 \& 1697 \& 468.9 \& 1787 \& 4622.8 \& 1943 \& 46 35，4 \& 2106 \& 46． 490 \\
\hline 45 \& 1441 \& 46 68． 0 \& 1080 \& 47 c 28 \& 1744 \& 4728.2 \& 8872 \& 4735.2 \& 2035 \& ${ }^{4} 7488.8$ \\
\hline 46 \& \& 4757.8 \& 15×3 \& 45 \& 1667 \& 4821.9 \& 1807 \& 4838.9 \& 1057 \& 48484 \\
\hline 47 \& $\underline{23.37}$ \& 4857.5 \& T466 \& 43.8 .2 \& 7600 \& 4921.4 \& 1739 \& 4934.3 \& 485 \& 49478 \\
\hline 48 \& 2286 \& 4957.0 \& 1209 \& $\begin{array}{ll}60 & 8.6\end{array}$ \& 1533 \& 50203 \& 1671 \& 50336 \& 1850 \& 50 47．0 \\
\hline \& 1235 \& 5038.3 \& 1353 \& 517.9 \& 1476 \& 5120.0 \& 1604 \& 51328 \& 1737 \& 5148.0 \\
\hline \& 1285 \& ${ }^{51} 55.8$ \& 1298 \& $52 \quad 7.0$ \& 145 \& 52.19 .1 \& 1535 \& 52.81 .7 \& 1665 \& 52.44 .5 \\
\hline 5 \& 1084 \& 52
58
58.7
58.6 \& 124
1187 \& $\begin{array}{ll}58 & 6.0 \\ 54 & 4.8\end{array}$ \& ${ }^{1} 334$ \& ${ }^{53} 17.9$ \& ${ }_{4} 3^{2} 2$ \& 5380.4 \& 1593 \& 5343.5 \\

\hline \％ \& 1035 \& 54 62．4． \& 1133 \& $\begin{array}{lll}55 & 3.5\end{array}$ \& 1235 \& | 54.18 .8 |
| :--- |
| 868.8 |
| 18.8 | \& 1307 \& 64 20，0 \& ${ }^{1323}$ \& 4441.9 \\

\hline 54 \& 8 \& 55.51 .1 \& tom 9 \& 5680 \& \& \& 1348 \& ${ }_{58} \mathbf{5 7} 27.4$ \& I \& 4540.4 \\

\hline 55 \& 938 \& 56 48，6 \& 1035 \& $57 \quad 0.4$ \& ti19 \& 5711.8 \& 2976 \& | 5685.0 |
| :--- |
| 57 |
| 58.6 |
| 8.6 | \& \& 8688.1

57860 \\
\hline \& 891 \& ${ }^{57} 48.1$ \& 974 \& 5758.7 \& 1052 \& $58 \quad 8.8$ \& 1154 \& 5821.5 \& 12.4 \& 5835.7 \\
\hline 58 \& 844 \& 58 48，4 \& 923 \& 58 56．s \& 1006 \& 5878 \& 10，23 \& 5919.2 \& 1182 \& $59 \$ 1.2$ \\
\hline 58 \& 298 \& 5944.5 \& 875 \& 59.54 .8 \& 951 \& 60.56 \& 1033 \& 60 Itas \& ［117 \& C0 28.6 \\
\hline 60 \& 753
709 \& 6042.6
$\$ 1405$ \& 8.8 \& 50.52 .6 \& 897 \& 61.3 .8 \& 974 \& 6114.2 \& tos4 \& 5125.7 \\
\hline \& $\frac{709}{600}$ \& 61.40 .5 \& 273 \& 0150.4 \& 845 \& $68 \quad 0.7$ \& 917 \& 6211.5 \& 992 \& 5282.7 \\
\hline 62 \& ¢ \& 62 38.4 \& 729 \& 62 47， \& 793 \& 6258.0 \& 805 \& 838 \& 935 \& 63 19，8 \\

\hline 68 \& 583 \& ef 53.6 \& 635 \& 63 42.4 \& \& | 63 |
| :--- |
| 64.52 .3 | \& \& \& \& 6416.8 \\

\hline 64 \& 543 \& 6531.1 \& 59 \& 65400 \& 647 \& 6582.5 \& 738 \& 85
65
Sis \& \& $\begin{array}{ll}65 & 18,8 \\ 88\end{array}$ \\
\hline 65 \& 504 4 \& 6628.5 \& 551 \& 6637.1 \& 600 \& 65 8 8． 1 \& 655 \& ${ }_{60} \mathbf{6 5} 5$ \& ${ }^{193}$ \& 68 \\

\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Lat } \\
& \text { M:S }
\end{aligned}
$$} \& A \& 800 -K \& \multicolumn{2}{|l|}{A \mid ISN0 $-\mathrm{E} \mid$} \& 1 \& 800 -K \& \multicolumn{2}{|l|}{A $1880^{\circ}-\mathrm{k} \mid$} \& \multicolumn{2}{|l|}{A $1880^{\circ}-\mathrm{K}$} \\

\hline \& \multicolumn{2}{|l|}{159°（toh 36 m$)$} \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{$158^{\prime \prime}(10528 m)$} \& \multicolumn{2}{|l|}{55^{4}（104} \& \multicolumn{2}{|l|}{$165^{\circ}(\mathrm{rch} 20 \mathrm{~m})$} \\
\hline
\end{tabular}

TABL

	$20^{\circ}\left(1^{\left.\frac{m}{4}-44^{m}\right)}\right.$				89°
	A	K	A	K	A
$\stackrel{1}{0}$	4634	${ }_{0}^{6}$ ćo	5013	${ }^{9} 00.0$	
	4632	$\begin{array}{lll}1 & 6.7\end{array}$	5010	17.5	SN
2	4627	213.5	goas	214.7	3
5	4600	520.2	4907	322.0	53
4	4609	428.8	4985	429.2	51
5	459	585.6	4969	5245	53
5	4578	540.8	4950	6437	59
2	4558	748.7	4928	7500	53
5	4534	855.2	4903	857.8	52
9	4508	950.8	4575	10 4，8	52
10	4479	I1 6.0	4813	11.11 .6	52
11	4446	1812.2	4505	12 15 4	51
12	4411	1318.3	4720	1525.1	［1
13	4374	1424.3	$4{ }^{2} 25$	1431.5	co
11	4333	$15 \quad 50.2$	464	15.389	5
15	4200	$18 \quad 58.0$	4637	16． 46	49
16	4245	1741.7	45^{88}	17 50，	44
17	4897	18 47．2	4535	18565	45
18	4146	12 52.5	4480	$\begin{array}{ll}80 & 2.1\end{array}$	8
13	4093	8087.7	4423	$\begin{array}{lll}21 & 7.7\end{array}$	47
20	4035	22.28	4363	22.18 .2	47
21	3980	95 2.5	4300	25.18 .5	4
28	3920	24125	4234	248885	45
26	3599	20 16．8	4168	2588.4	＋
84	3796	2821.1	4100	2655.1	4
25	37.31	27.25 .3	40×5	2737.8	4.
26	3664	2830.2	395	28458	F
27	3595		3885	29458	41
28	3524	3036.4	3804	30 4206	
29	3483	31898	3726	\＄1 55．	4
30	3380	58.489	3646		3
81	3305	25405	3505	\％ 85 5， 7	
52	32\％	34485	3184	$88 \quad 288$	
38	3153	\＄5 51.8	340 t	$56 \quad 5.2$	
H	3076	8853.2	2317	57 7，	
55	agos	3755.8	3273	888	w
86	2919	88570	3147	3911.7	
57	2840	5958.6	3065	40133	
81	2460	410.0	$39 \% 4$	41 14．5	
39	2679	421.1	2857	48160	
40	2508	$48 \quad 2.0$	3799	4518.9	
41	2517	442.8	2712	4417.6	
42	2.136	45.3 .1	2093	45180	
43	2356	$46 \quad 53$	2337	46 18．3	
44	2275	478	2449	47 182	
48	2194	$48 \quad$ क． 1	2306	4812.8	
46	2784	$48 \quad 2.6$	2275	4917.4	
47	2033	801.9	2598	50 10．7	
43	1953	51.10	2103	81	
49	1875	380.0	2016	52 14，6	
50	1797	5285.7	1933	55150	
51	1719	5557.1	［847	54.11 .6	
5	14.12	5458.4	1769	55 8．4	
55	1566	55.53 .4	1685	5678	
54	149 x	56 51．8	1604	5750	
55	1418	67.490	1525	58.24	，
58	1346	58.46 .4	1449	\＄5．58．7	
48	2375	5948.7	1370	5856	
58	1205	60 10，目	1295	60515	
8	1236	6122.7	1221	61 be．2	
60	1069	6234.5	1149	62 48．7	
41	1003	6531.0	1999	6342.9	
62	949	64 27．4	1010	¢f 390	
63	878	65 25， 6	947	6534.9	
8	817	6818.7	878	的 30.7	
65	758	6715.7	Sta	67.263	
	A	$150{ }^{6}-\mathrm{K}$	A	180 ${ }^{\circ}-\mathrm{K}$	A
H．A	$154^{2} 11$	$\left.\mathrm{ob}^{\text {d }} 16^{\mathrm{m}}\right)$	$153{ }^{2}$（	（\％h ramy	151

31

K $\sim d$	20°	21°	22°	23°	24°	25°	28°	22°	24°	29°	miN ALT.

\square

