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i. INTRODUCTION. About ten years ago this author wrote the software for a
suite of navigation programmes which was resident in a small hand-held
computer. In the course of this work it became apparent that the standard text
books of navigation were perpetuating a flawed method of calculating rhumb lines
on the Earth considered as an oblate spheroid. On further investigation it became
apparent that these incorrect methods were being used in programming a number
of calculator/computers and satellite navigation receivers. Although the
discrepancies were not large, it was disquieting to compare the results of the
same rhumb line calculations from a number of such devices and find variations
of some miles when the output was given, and therefore purported to be
accurate, to a tenth of a mile in distance and/or a tenth of a minute of arc in
position. The problem has been highlighted in the past and the references at the
end of this paper1"8 show that a number of methods have been proposed for the
amelioration of this problem. This paper summarizes formulae that the author
recommends should be used for accurate solutions. Most of these may be found
in standard geodetic text books, such as Bomford9, but also provided are new
formulae and schemes of solution which are suitable for use with computers or
tables. The latter also take into account situations when a near-indeterminate
solution may arise. Some examples are provided in an appendix which
demonstrate the methods. The data for these problems do not refer to actual
terrestrial situations but have been selected for illustrative purposes only.
Practising ships' navigators will find the methods described in detail in this paper
to be directly applicable to their work and also they should find ready acceptance
because they are similar to current practice. In none of the references cited at
the end of this paper has the practical task of calculating, using either a computer
or tabular techniques, been addressed.

2. R H U M B L I N E P R O B L E M S . The two standard problems are as follows,

(i) Problem I. Given the latitude ((/>) and longitude (A) of each of two points,
calculate the rhumb line track (C) and the distance (S) between them.

(ii) Problem II. Given the latitude and longitude of a point and the rhumb line
track and distance to a distant point, calculate the latitude and longitude of
the distant point.

The geometrical relationship between the quantities is seen in Figures i and 2,
where AA is the difference in longitude between X and Y, AM is the difference
in meridional parts and Am is the difference in meridional distances. It should be
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Fig. i. Chart
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Fig. 2. Spheroid

noted that the distance along the meridian between the latitudes of X and Y is
not A(}>, the difference in latitude, but the difference in the lengths of the
meridian arcs (meridian distances) from the equator. Use of A<j> has been the
approximation which, in the past, has given rise to the discrepancies referred to
in the introduction.

3. F O R M U L A E . The following are appropriate for the solution of problems
I and II.

10800/. (TT 6\ i /i+esin<A\
M = Intan - + - — e l n l . - (i)

77 \ \4 2/ 2 \i-esin 0//

where e is the eccentricity of the spheroid.

m =
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where An = i .
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where a is the semi-major axis of the spheroid and m is in international nautical
miles.

i8 j2m A2 jA. nAR
<f> = h- j lsin2/H sin4TH -sin6T (3)

fl^rt j\n ^ n So

where T is the first term on the right hand side of the expression.

aAAcosfi
S = ~0 ~^ 2 . 2-r.L (4)18^2 smC(i — e sin 9)2

where (j> is the mean latitude and 5 is in nautical miles.

-2 T\t

AA =
1 8 £2 sin C( i -<?2 sin
- •= - (s)

acosp

" (6)
sm

cos 9 (7)

P and Q^will be defined and explained in the following section. There are more
than sufficient terms in formulae (2) and (3) for most marine applications. The
user may therefore choose the number of terms that are sufficient for the
application under consideration.
4. P R A C T I C A L C A L C U L A T I O N S .

4.1. Computer methods.
Problem I.

Calculate Mx, AfY, mx and mY using formulae (i) and (2). Solve for C and 5
from tan C = AX I AM and S = Am/cos C, where AX = AY — Ax, AM = MV—MX

and Am = my— mx.

Heed the ratio of signs in the expression for tan C to place C in its correct
quadrant. The units of M have been chosen to match those of AX (see Appendix) .
If ^x = ^Y) that is C = 90° or 270°, and also if the track lies close to the east or
west directions, use formula (4) to find S because, in the latter case, the distance
5, derived from S = Am/cos C, may be inaccurate as both Am and cos C are very
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small. This will be especially so if the computing device works to a small number
of significant digits.

Problem II.

Calculate mx using formula (2), Am = Scos C and thence find mY = mx

$iY may then be obtained from formula (3) which has been derived empirically
by reversing the series formula (2). However, it is not essential to have formula
(3) in a computer program because latitude can be derived by successive
approximations using an initial value of <f> = m/6o etc. in formula (2). Three
iterations are sufficient for most marine navigation applications.

For example, given ra = 2400, find (j>.

Iteration

Start
i
2

}

m

2400

2391-7542

2399-9938

Am

8-2458
0-0062

W $

40°
0-13743 40-I3743
o-oooio 40-13753

Calculate ytfx, M^ and AX = AM tan C.

As in Problem I, for a course lying very close to a parallel, AX derived from
AX = AM tan C may be inaccurate because AM is very small and tan C very
large. Under these circumstances formula (c.) should be used. For a course along
the parallel, formula (r) is exact.

4.2. Tabular methods. It will be assumed that the user possesses a table of
spheroidal meridional parts (M) such as those which are to be found in None and
Bowditch. It is not essential, although it is preferable, to use the parameters of a
recently adopted spheroid. For example, comparing WGS 72 and WGS 84, the
difference between the semi-major axes is two metres and i x io~5 in the
flattening. For the methods described here, in addition to a table of meridional
parts, a table of meridional distances and P and Q_will be necessary. At an
argument interval of one degree the table is quite small as can be inferred from
the extracts which are provided for the illustrative examples.

Problem I.

From the tables find Mx, My, mx, and m¥. Using a calculator solve C from
tan C = AX/ AM and S from S = Am/cos C.

The problem of an unstable solution for S for lines in the vicinity of the east and
west directions is worse than in the computer solution because of the severe loss
of significant digits, particularly with Am. For a sphere a very accurate
approximation to the distance along near east or west lines, see reference (5), is:

c AX XS = cos 0
sine

By analogy the spheroidal counterpart of this formula would be formula (4) which
may be put in the form of formula (6):
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where P = cos (
sn2(i — e2 si

an
or P = cos 0,

^60 x i8c2 x 180 (i — er sin .

if 5 is expressed in nautical miles and JA in tenths of minutes of arc. P, in the
range of latitude normally encountered in marine navigation, is a small, almost
linear, quantity when tabulated at degree intervals to o-ooooi.

Problem II.
From the tables find mx. Using a calculator solve for Am from Am = S cos C

and thence mY from mY = mx + Jm. 0Y may be found from the tables by
interpolating raY through the respondent. From the tables find Mx and Mv, A\
from AX = AM tan C and thence AY.

The inaccurate solution of AX using AX — AM tan C in the vicinity of a parallel
may be avoided in a similar way to that used in Problem I.

For a sphere:
S sin C

COS0

and the corresponding expression for a spheroid is formula ($), which may be
put in the form of formula (7):

i / i8p(i-e
2sin20)J

where CL= —\ i —
COS0\

i / 6ox i8p x 180(1 —e2 sin2 0)?
or <i= — T ' ~cos 0 \ an

when adopting the same practical units as in Problem I.

Examples of the solution of the two standard problems, including the critical
case of nearly east-west courses, are contained in the appendix. Unlike the
methods proposed by most other authors, which give results in geographical
miles, these formulae give distances in international nautical miles of i8p
metres.

5. C O N C L U S I O N . It has been shown that the precise calculation of rhumb line
problems, either using a computer or tables and a calculator, can be made in a
straightforward manner. It is only when the rhumb lines lie on or very close to
a parallel of latitude that special formulae need be used. For tabular methods of
solution the user needs, in addition to a table of meridional parts, which may be
found in standard navigation tables such as Noiie and Bowditch, a small table (about
half a page) of meridional distances (m) and the factors P and Q. A table of m, P
and QJ extracts from which have been given for the examples, has been
constructed at degree intervals and has proved to be adequate in the range of
latitudes normally encountered in marine navigation. The additional work
required to effect an accurate solution is slight as will have been seen from the
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examples given. The material contained in this article was transmitted to H.M.
Nautical Almanac Office in July 1993 an(i nas been of assistance in the preparation
of a computer navigational program there.

A P P E N D I X : E X A M P L E S

Extracts from Tables of M, m, P, and Q^(WGS 84)

Lat

4° 40'

4° 4i'
22° I i '

22° 12'

52° 47'

52° 48'

53° 10'
53° i i '

M

278-44

279'43

1356-86
>3i7'94

3723-86

372r5l

3761-96

3763-63

Lat m Lat

4° 238-83 48°
5° 298-53 49°

22° 1314-15 52°
23° 1373-94 £3°
24° H33'74
25° 1493-55

P

0-00244
0-00243

0-00239
0-00237

Lat Q^

11° 0-00195
12° 0-00198

24° 0-00257
25° 0-00264

Example 1. Find the course and distance from io°i8/4N o37°4r'.7E to 53° 29.'j
113° 17'.iG.

Finish
Start

Latitude

53° 29. 'rN
10° i8/4N

A

Longitude

113° 17'. lE
°37°4i ' -7E

U 75° 35'.4E AM

M

3794-J4
617-64

3176-90

oi

3201-59
615-43

Am 2586-16

AA 4535-4 _ 0tan course = = Course 54.9900
AM 3176-90

Am 2586-16
Distance = = 45°7'7

cos course cos 54°'99OO

Course 055°.o Distance 4507-7 n.m.

Example 2. Given the starting position, course and distance, find the final position. Start
22° n'.4N ii5°44'.2W; course 237°.6; distance 2994 n.m.

m for start (22° n'.4N) 1325-51
Am = Distance cos course = 2994 cos 237°.6 — 1604-27

m for finish -278-76
Latitude of finish °4° 4°'-lS

Mfor finish (o4°4o'.iS) -278-54
M for start (21° n'.4N)

AM -1635-83

Longitude of start 115° 44'
AX = AM tan course = -1635-83 tan 237°.6 -2577'? 42° 57'
Longitude of finish 158° 41'

Latitude 04° 40'. i S Longitude i58°4i ' .9W
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Example 3. Find the course and distance from j2° 47/88 o97°3i ' .6W to 53° io.'8S
041° 34'.6W.

Finish
Start

Mean latitude
P

Latitude

53° 10. '8S
J2°47/8S

r2° 59/38
0-00237

Longitude

041° 34'. 6W
097° 31'. 6W

AX rr° r7'.oE AM

M

-3763.3°
-3724-18

-38-12

AX 33i7'o
tan course = - = - Course 9oc.6co6

AM -38-12

AX
Distance = — - (cosMeanLatitude + P)

sin course

3357-0
Distance = - (cos — 52° 59'. 3 +0-00237) 2028-9

°

Course 090°. 7 Distance 2028-9 n.m.

Example 4. Find the course and distance from 48°4j.'oN 061° 31'. iW
to 48° 45/oN 005° 13'. 2E

AX 66°44'.3E
Mean latitude 48° 45. 'oN
P 0-00243
AX 4004'. 3
Course 090°

AX
Distance = - (cosMeanLatitude + P)

sin course

4004-3
Distance = - (00548° 45'. 0 + 0-00243) 2649-9

sin 90°

Course 090° Distance 2649-9 n.m.

Example 5. Given the starting position, course and distance, find the final position. Start
23°44/7N 045° 22 ' . 2W; course 271°.!; distance 3508 n.m.
m for start (23° 44. '?N) 1418-49

Am = Distance cos course = 3508 cos 271°. i 67-34
m for finish 1485-83
Latitude of finish 24° c2/3N
Mean Latitude 24° iS.'jN
Q, 0-00259

AX = Distance sin course I -- QJ
\cos MeanLatitude }

(
AX = 3 508 sin 271°. i -- 0-002 59) -3839 .5

\cos 24° iS'.j

Longitude of start 045° 22'. 2W
AX -3839'- S 63° £9'..?W
Longitude of finish 1 09° 2 1 ' . 7 W
Latitude 24° J2/3N Longitude 109° 2i'.7\V
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Example 6. Given the starting position, course and distance, find the final position. Start
n° 13/28 103° 12'. 3E; course 270°; distance 2536 n.m.

Mean latitude 11° 13/28
Q_ 0^00196

AX = Distance sin course!
\cos MeanLatitude

A\ = 2536 sin 270° I 0-00196 I -2j8o'.4
\cos- 11° 13'. 2 /

Longitude of start 103° 12'.3E
AX -2j8o'.4 43° oo'.4W
Longitude of finish o6~0° ,,'.9E

Latitude 11° 13/28 Longitude 060° n'.gE
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