UNCERTAINTY IN DEAD RECKONING POSITION (first quadrant only)

Item	Value	Uncertainty
Boat Speed	$\mathrm{S}_{\mathrm{B}}:=6.578313 \cdot \mathrm{kts}$	$\mathrm{U}_{\mathrm{SB}}:=2 \cdot \mathrm{kts}$
Boat Course	$\mathrm{C}_{\mathrm{B}}:=15 \cdot \mathrm{deg}$	$\mathrm{U}_{\mathrm{CB}}:=5 \cdot \mathrm{deg}$
Time Run	$\mathrm{T}_{\mathrm{B}}:=1 \cdot \mathrm{hr}$	$\mathrm{U}_{\mathrm{TB}}:=\frac{10}{3600} \cdot \mathrm{hr}$
		$\mathrm{mts} \equiv 6076 \cdot \frac{\mathrm{ft}}{\mathrm{hr}}$

Equations
In the direction of longitude

$$
\begin{aligned}
& f\left(S_{B}, T_{B}, C_{B}\right):=S_{B} \cdot T_{B} \cdot \sin \left(C_{B}\right) \quad D_{B x}:=f\left(S_{B}, T_{B}, C_{B}\right) \\
& U_{D B x}:=\sqrt{\left(U_{S B} \cdot \frac{\partial}{\partial S_{B}} f\left(S_{B}, T_{B}, C_{B}\right)\right)^{2}+\left(U_{T B} \cdot \frac{\partial}{\partial T_{B}} f\left(S_{B}, T_{B}, C_{B}\right)\right)^{2}+\left(U_{C B} \cdot \frac{\pi}{180 \cdot \operatorname{deg}} \cdot \frac{\partial}{\partial C_{B}} f\left(S_{B}, T_{B}, C_{B}\right)\right)^{2}}
\end{aligned}
$$

In the direction of latitude

$$
\begin{aligned}
& f\left(S_{B}, T_{B}, C_{B}\right):=S_{B} \cdot T_{B} \cdot \cos \left(C_{B}\right) \quad D_{B y}:=f\left(S_{B}, T_{B}, C_{B}\right) \\
& U_{D B y}:=\sqrt{\left(U_{S B} \cdot \frac{\partial}{\partial S_{B}} f\left(S_{B}, T_{B}, C_{B}\right)\right)^{2}+\left(U_{T B} \cdot \frac{\partial}{\partial T_{B}} f\left(S_{B}, T_{B}, C_{B}\right)\right)^{2}+\left(U_{C B} \cdot \frac{\pi}{180 \cdot \operatorname{deg}} \cdot \frac{\partial}{\partial C_{B}} f\left(S_{B}, T_{B}, C_{B}\right)\right)^{2}}
\end{aligned}
$$

Distance run

$$
\mathrm{f}\left(\mathrm{D}_{\mathrm{Bx}}, \mathrm{D}_{\mathrm{By}}\right):=\sqrt{\left(\mathrm{D}_{\mathrm{Bx}}\right)^{2}+\left(\mathrm{D}_{\mathrm{By}}\right)^{2}} \quad \mathrm{D}_{\mathrm{B}}:=\mathrm{f}\left(\mathrm{D}_{\mathrm{Bx}}, \mathrm{D}_{\mathrm{By}}\right)
$$

Equations

Distance Run

$$
\mathrm{D}_{\mathrm{B}}=6.58 \mathrm{mi}
$$

Direction of Longitude

$$
\mathrm{D}_{\mathrm{Bx}}=1.70 \mathrm{mi} \quad \mathrm{U}_{\mathrm{DBx}}=0.76 \mathrm{mi}
$$

Direction of Latitude

$$
\mathrm{D}_{\mathrm{By}}=6.35 \mathrm{mi} \quad \mathrm{U}_{\mathrm{DBy}}=1.94 \mathrm{mi}
$$

