“Advancing COPs” revisited
1 Is there really some “challenge”?
George Huxtable wrote in his posting of 28 Feb 2010:  
“Thanks for support from Andres, Antoine, and also from Lars Bergman; it's a pleasure to see his reappearance as a contributor, after a long absence, and to do some trig analysis which is way beyond my own powers.  And thanks for additional backing off-list also.  But I fear it will be futile. It's one of those situations in which rational logic and argument no longer plays any part. I don't expect to see any response to my challenge, but no doubt this business will run and run”.  
Well, here is some response, but a good question is: what is the “challenge” actually about?. 
When I say somewhere that “an observer’s position on this (i.e earlier) position circle will not be transferred according to the distance d and course α”, Huxtable thinks that I mean his boat does not go the distance: ”The observer must move through a distance d with a course α; it’s one of the pre-conditions of the problem!” Of course the boat goes along its track but it will not end up on the circumference of a correctly transferred position circle.  That is the real problem.  
To prove that it must or at least could, Huxtable came up in his Forum article with a special due-North double sight configuration (see Fig 6, reproduced from my Forum article).  If you postulate that the initial position (p) and final position (p0) of the observer are exactly known, then in the case of a double sight, p0 must lie on a 2nd sight’s position circle; p0 must then also be a fix, and one that is exact too because p0 is an exact position.  These conditions must of course be satisfied for each of the alternative fixes obtainable with a double sight.  

As George shows us, the trick here is to ensure that the exactly known observer positions in the NH and SH and therefore also the NH and SH fixes all lie on the same meridian through the GP of the 2nd sight.  
Unfortunately, at the time he wasn’t aware that his configuration is in fact just an application of the traditional running fix technique (RFT) in celestial navigation, i.e of celestial RFT for short.  It can therefore be resolved with LSQ*, the least squares procedure that incorporates celestial RFT, or with G.H. Kaplan’s equations (see below). George thought that his special configuration stands on its own as a piece of what he calls “simple geometry”, the results of which are “almost self-evident”.  
“My aim here is simply to show up the errors in the Zevering method (i.e GD-UT), rather than to choose between better alternatives”.  Again, he isn’t aware that he is merely trying to vindicate celestial RFT as a universally correct transfer technique.  

But celestial RFT can be shown to be theoretically flawed without reference to any other alternative transfer technique. It can therefore not determine reliable position solutions and be used to test or gauge presumed errors in alternative techniques.  To argue that GD-UT or any other transfer technique for that matter is wrong requires that they too are exposed as theoretically flawed.      

Huxtable initially tried to do exactly that with regard to GD-UT through an earlier brain child of his, the due-North configuration reproduced in Fig 5. This is why I started discussing these notions first in my Forum article. Boats from accurately known positions A, B, C on the original position circle go due north simultaneously for 1o. Their final positions at A*, B*, C* are therefore accurately known too.  Huxtable then thinks or at least infers that GD-UT claims to be able to define a position circle that passes through points A*, B*, C* “..the Zevering procedure (i. e GD-UT) ... assumes that the transferred position circle defines a locus which includes all such vessels (final positions) and looks for its intersections with another circle.  But that assumption is wrong”.      

The vision of the three boats in fact already heralds Huxtable’s idea of the special configuration expounded in the Forum article.  What obviously was on his mind was that if a position like A*, B* etc. is accurately known it must also be (an accurate) fix obtainable with a double sight.  Let this boat be for instance B in Fig 5.  The 2nd sight has a GP on the meridian through B (GHA = 315o) and its position circle passes through B*.  What can be more self-evident than that boat B drags the original 1st sight’s position circle with it to B* along the meridian through B and B* where it must intersect with the 2nd sight’s position circle.       
But prior to his Forum article, Huxtable has already accepted that in spherics a position circle passing through transferred points like A*, B*, C* cannot exist, also no longer claiming that GD-UT can do this: “in plane geometry ... when the centre of a circle is displaced through the same distance and direction, points on its periphery are displaced through the same distance and direction.  On a sphere, however, that is not the case ... On a sphere, if all points on a (position) circle are displaced through the same distance and direction, the result is not a circle at all...”.  
In the due-N configuration a position circle can be fitted through pairs of such positions, e.g A*and B*, B* and C* etc. Each pair yields a position circle with different properties.  More critically, none of such position circles
 has a Zd equal to that of the original position circle, to mention just one problem.  This of course is also the case with a position circle that passes through the alternative fixes in George’s special configuration.  These fixes are wrong because they are obtained with celestial RFT which is a flawed transfer technique.  Huxtable’s last-cited statement should have been extended: 'On a sphere, even if one or two points on a position circle are displaced through the same distance and direction, the result can also not be a correctly transferred position circle.'      
Huxtable believes that his special configuration is correct because it gets what he calls “exact solutions”.  Celestial RFT, A-UT (the surrogate altitude technique), GD-UT as mathematical models or algorithms all get exact solutions.  But if the theory and assumptions behind an algorithm are suspect, the “exact” solutions are simply untrustworthy.  
The application of LSQ* to his special configuration also shows that the assumption of accurately known observer positions is an irrelevant element in his argument: any realistic assumed position will provide the same position solutions (see Table 4)! By realistic is meant that the bodies concerned are minimally above the horizon: Hc cannot be negative! 
So, not only can there be no “challenge” as envisaged by Huxtable and apparently believed by others who take his views for granted, but he is actually back to where he started in 2005 as he has not been able to establish that GD-UT is a wrong transfer technique.  This now remains the real challenge before him.
2 Celestial RFT and G.H Kaplan’s adjustment of celestial coordinates
The whole argument is indeed about a correct transfer technique or as G.H. Kaplan puts in his 1996 article: “How can the Greenwich hour angle and declination of the observed body be adjusted to correctly advance its LOP?”. Unfortunately, Kaplan leaves this question unanswered, at least in this article, but states that the usual chart-based construction, i.e celestial RFT, “is not rigorously correct”.
  He gives various reasons for this which I personally find difficult to follow because of the alternating allusions to a position line as a position circle segment (a spherical concept) and as a position line in the traditional chart-construction (attempt at simulating a position circle segment on a Mercator chart).  The projections on the chart are of course never circles as is shown when applying the General Equation
.  
However, the principal reason that celestial RFT is theoretically flawed as shown by Kaplan’s equations is what I will call the 'constant azimuth' assumption, or in Kaplan’s words: “.. if we have an altitude observation made from estimated position p, and we want to use that observation to correct an estimated position p0, then we assume that the altitude intercept and azimuth computed for position p also apply to p0. Essentially we imagine a celestial body, observed from position p0, with the same altitude and azimuth as the real celestial body observed from position p.”   

That the Zd or radius (= 90 - Ho) of the original position circle remains constant in the transfer is not an assumption but a given parameter.  But the azimuth from p cannot remain the same as the azimuth from p0 as people familiar with trig analysis know: azimuth in spherics is computed using the coordinates of p and p0.  In simple terms, the direction in which you see a body at p is not the same as the direction from p0.  The effect of assuming that the difference in azimuth does not matter in practice generally gets worse the larger the Zd and the displacement of the observer become.  
3 Fine-tuning the transfer concept in celestial navigation

The question of the reliability, i.e general validity in mathematical terms, of a transfer technique whichever technique is used remains important because if the technique is theoretically suspect it can also not be reliable in a general, practical sense, as already indicated above.  It will then adversely affect the position fix, which would be to the detriment of the sextant-wielding navigator.

To avoid unnecessary confusion which might set readers off on some wild goose chase, noted here is also that the type of transfer envisaged with such techniques as celestial RFT, surrogate altitude (A-UT), GD-UT are different from algorithms which as in GPS navigation derive the position of the moving observer through high-frequency radio signals from moving satellites whose celestial trajectories at any given time are known, or through a set of celestial bodies whose motions and positions for an observer on earth change as a known function of GMT.  In other words, in a non-simultaneous observation of celestial bodies (or of the same body), the observer is only getting sextant-based 'snapshots' of the position of a certain body and has to transfer an earlier snapshot of this kind to form the correct overlay with a later snapshot.

In a recent posting, Andres Ruiz mentions that all these techniques are just approximate “because, in fact, the original circumference is deformed in the way of the motion, and these methods assume that the COP remains undeformed”.  But this by the looks of it refers to a multi-variable total differential model, apparently developed by G.H. Kaplan in his 1995 article, "Determining the Position and Motion of a Vessel from Celestial Observations".  In his 1996 article already referred to, his 1995 algorithm is called “Another Approach”, for accuracy said to require “automated observing systems”.
I should mention that there is as far as I am aware no experimental or empirical proof in celestial navigation that any of the transfer techniques, celestial RFT, A-UT, GD-UT actually work.  Such a test would in fact be easy by taking Sun sights from two known positions (by GPS) a given distance apart as the crow flies.  I wager that the (relevant) position solution nearest to the 2nd position will be the one based on GD-UT.  The experiment can of course be extended to three non-simultaneous Sun sights which would also permit an estimate of the error margin of the position fix.        

I prefer the terms position circle and position line, but will use the often used abbreviations COP (Circle of Position) and LOP (Line of Position) in the remainder of this posting.  Numerical results in the sections to follow are shown rounded to four decimals but all computations were done in spreadsheets with un-rounded figures.        

4 The plane-geometric construction principles adopted in celestial RFT

What happens when a circle is transferred in plane geometry is in various ways illuminating in understanding the idea behind the two transfer techniques in celestial navigation mentioned above. In plane geometry, construction-wise the transferred position circle can be found by transferring the original centre for the distance and direction of the transfer and by drawing the circle with the same radius from this transferred centre. This is GD-UT in plane geometry.  In Fig 1, the transferred centre is in C*.  
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Fig 1: The single-point transfer in plane geometry 

Alternatively, the transferred centre can be found through a construction based on one point on the original circle transferred for the same distance and direction.  Point A is transferred to A*.  Draw a circle segment from A* with the given radius.  Where a line parallel to AA* drawn through C intersects this circle segment is the transferred centre C*.  A* and of course any other transferred point, like B*, will lie on the transferred circle drawn from C*. This is plane-geometric RFT as simulated in coastal navigation.  Equivalent to the single-point construction is the two-point construction, by drawing intersecting circle segments with given radius from A* and B*.  C* is at their point of intersection.  The two-point construction is merely a variant of the single-point construction.    

A-UT (surrogate altitude technique) in plane-geometry obviously does not work at all.  A circle with radius CA* (a surrogate radius) will not pass through all transferred points like A*, B* etc.   

The construction principles which underlie the single-point transfer in plane geometry are:

(a) The transfer is for a given distance and direction
(b) The transferred circle has the same radius as the original circle

(c) The slope of AC (bearing from A to C) is equal to the slope of A*C* (bearing from A* to C*).

It follows that in plane geometry the quadrangle CAA*C* is a parallelogram (see Fig 1). If in (a), course is substituted for direction, in (b) zenith distance (Zd = 90-Ho) for radius and in (c) azimuth (Zn) for slope/bearing, we get celestial RFT. Kaplan’s equations actually show that celestial RFT simulates the plane-geometric construction through one transferred point.  
From the simulation in celestial RFT of plane-geometric construction features also stems the idea that a position on the presumed transferred position circle backward-projected or “back-calculated” for the run data must always lie on the original position circle.  Thus, if A* lies on the transferred circle, its backward-projected position A is presumed to lie on the original circle.  Supporters of celestial RFT consider the backward-projected position principle which is implied in the chart-construction as a self-evident criterion or “pre-condition” for the technique’s validity, not realizing that it merely reflects the plane-geometric construction adopted in celestial RFT.  
Because the plane-geometric transfer is actually not applicable in celestial RFT, this latter transfer technique can also not support a number of features one would expect from a correct transfer technique. One is the once-only or unique transfer of the original position circle, regardless of the actual geographic location of the initial position
.  In celestial RFT, the implied transfer of the original GP changes with the assumed location of the initial position and therefore of the run. The implied coordinates of the transferred GP of a position circle change also depending on the properties (GHA, Dec and Ho) of the 2nd sight it is combined with in a double sight.  The coordinates of the transferred GP shouldn’t be affected this way. I gave various numerical examples in my Forum article of yore to demonstrate this, but I will come back to these problems later (see Sections 7 and 8).      
5 The GD-UT transfer
GD-UT is mentioned as a transfer principle in celestial navigation in the ANM, Vol III: “If the observer is in a ship and there is a run between sights, the first position circle must be transferred for the run.  This can be done by transferring the geographical position and then drawing the circle” (p 43).  The “drawing of the circle” refers to a chart-based construction in the case of large-altitude observations of the Sun. This construction therefore simulates a plane-geometric construction which is acceptable under those circumstances. 

But there are more compelling reasons for adopting the GD-UT transfer. It is necessary to divorce the run data itself, i.e course and distance, from the actual geographic location of the run, i.e the observer’s initial position somewhere on the original position circle.  The latter position is in fact irrelevant, as it clearly is in plane geometry, in the application of the Intercept Method
, in the double sight solution, in the application of the General Equation.  The assumption of particular observer positions is part of the failure of celestial RFT to effect a unique transfer of the original position circle. It is more plausible that only the movement of the observer (course and distance) and the transfer of the original position circle’s GP are correlated.   
How do we visualize this? The movement of an observer between two positions on the globe  -the initial position lying somewhere on the original position circle-  only represents the length of a relatively small great-circle arc (angular distance) at the course angle it makes with a meridian through the initial position.  It is plausible to expect that relative to this movement it is necessary to transfer the original GP for the same angular distance and the same course angle at the meridian through the GP.  I should perhaps state at this point that a) an argument about rhumbline versus great-circle track can be shown to be simply trivial; it can also be adjusted through the so-called half-convergency, equally trivial; and b) a great circle can be fitted mathematically through a single point on the globe when its angle of cut at the meridian through such a point is known; the mathematics are for instance found in the ANM (Vol II).
Adopting the above principle of 'relative movement' explains for instance why it is not possible as assumed with celestial RFT to affect a proper transfer of the original position circle by transferring an observer’s position on it for the run data. 

[image: image2.emf]P

X*

Z*

Z

X









*

V vertex of gr. circle  TXZV 

V*

vertex of gr. circle Q*X*Z*V*

T

V

V*

E*

E

T

great circle intersection point 

Greenwich

d

S

Q*

MD

R'

Z observer's position

Z*implied transferred observer's position

X GP 

X*transferred GP 

Z*

Z

Z, Z*

azimuth

e

qu

a

to

r

XX*run distance 

ε = EV; ε* = E*V*; XE = 90

o

    

Fig 2: Relative movement of X and Z in a due-North displacement model
  

It is possible to understand this with reference to Fig 2.  The run is due North and the course angle is 0o or 360o. The effect on the relative length of XX* an ZZ* through varying altitude, azimuth and distance can be explored with a computation program.  

The zenith distances from Z and Z* are equal to a given Zd (= 90 - Ho) and lie on great circles through X and Z and X* and Z*.  These belong to a family of 'parallel' great circles that happen to intersect in point T, but cut the equator at angles that vary between 0o and 90o.  A special family of parallel great circles are of course the meridians.  Parallel great circles cannot be really parallel because they intersect, so that the quadrangle ZXX*Z* can only approach a plane parallelogram when the zenith distance ZX is very small (altitude very large).  
With a due-N model (observer moves in a cardinal direction), the angle of cut ( of the transferred great circle with the meridian through X and X* and hence also (*, can be calculated rigorously.  Thus also the length ZZ* can be calculated and compared with XX*.  This is not possible in a straightforward manner with a configuration where the course angle ( is not strictly in a cardinal direction.  More specifically, the angle of cut ( of the transferred great circle with the meridian through X* cannot be independently calculated if the course is not due north as it is in this case.  So the due-N configuration handled appropriately is in many respects a very useful analytical tool, also in this case.
To give an idea of the effect of the relative movement, when Zn is 100, the movement of the observer is 60' (due north) and Zd is 85 (very large), |XX*-ZZ*| is 255'7 (very large); when Zn is 100, the movement 60' as before and Zd is 30 (moderate), |XX*-ZZ*| is 10'.6 (moderate).  The larger the Zd the more pronounced the discrepancy becomes.  When the run distance is halved to 30', |XX*-ZZ*| is approximately halved too: at the same Zn (100) and Zd (85) assumptions as before, |XX*-ZZ*| is respectively 126'.5 and 4'.9.      
The relative movement between the observer and the transfer of the original GP prevents a boat departing from Z and travelling a distance due north equal to XX* to end up at Z*. This can only happen when (in this case) Z is exactly at the N cardinal point.  In other words, in general the final run position of the boat cannot lie on a great circle through X* and Z*.     
At face value it seems possible to maintain that the Zevering method gets it all the wrong way round: the movement of the observer is completely known, whereas the corresponding movement of the GP is unknown (as indeed it is in LSQ* or when using the chart-based version of celestial RFT);  therefore, for a given Zd the transfer of the original GP cannot be the same as the movement of the observer and becomes unpredictable.  The GP’s transfer may therefore differ substantially from the observer’s movement and the run data but the navigator practicing celestial RFT need not worry about this”.  

Barring the special cardinal movement which in fact proves the validity of GD-UT, the not so little snag in a counter-argument of this type is that in the due-N case celestial RFT cannot determine a correct transfer of the original GP!  So, the argument is not chicken-or-egg.  In fact, the chicken comes first, i.e the transfer of the GP for the run data. 
6 The specification of the properties of the COP transferred with celestial RFT

I will come back later (see Sections 7 and 8) to the anomalies surrounding the due-North configurations used in the pseudo controversy debated in Forum.  The anomalies and the reason for their existence can be demonstrated with any actual double-sight case, e.g the Moon-run-Sun case in the ANM
: GMT Moon and Sun 05 59 45 and 08 40 10; GHA, Dec and Ho: Moon 7.9950, -22.0400, 17.4117; Sun 309.1783, 5.2050, 19.9450; DR at Moon sight 50.1667N/50.8333W; run is 70o at 12 kn/hr.  The Moon-run-Sun case can be resolved with celestial RFT by applying LSQ*.  The position solution for the SH may be forced by assuming a DR at Sun sight of, say, 59.4000S/85.1000E, but any other realistic DR assumption will give the same results (Table 1).  

The plot for the NH is shown in Fig 3.  The Moon-run-Sun case is also sketched in Fig 4. The positions backward-projected with celestial RFT are at D (see Fig 3 and 4a) and lie on the original COP, which may be seen by computing Ho in the following manner:   


β1 = -(LongD1 + GHA); β2= LongD2 + GHA 




SinHo = SinDecSinLatD1 + CosLatD1CosDecCos β1 = SinDecSinLatD2 + CosLatD2CosDecCosβ 2.
Table 1: Moon-run-Sun analyzed with LSQ*

	 
 
	NH
	SH
	
	NH
	SH

	
	Moon
	Sun
	Moon
	Sun
	
	Moon

	
	Final iteration results:
	
	Intercept Method results:

	
	DR at Sun sight
	
	DR at Moon sight

	
	50.3496N/14.0474W
	59.4000S/85.1000E
	
	50.1667N/14.8333W
	59.5829S/84.1102E

	LHA
Z
Zn
e 
	353.3655
-6.4441
173.5559
-0'.0000
	295.3372
-73.2376
106.7624
-0'.0000
	92.8294
75.9891
255.9891
-0'.0000
	394.9938
-37.4136
322.5864
0'.0000
	Hc
LHA
Z
Zn
p 
	  17.5393
353.1617
   -6.6468
173.3532
-7'.6607
	 17.8403
 92.1052
 76.6775
256.6775
-25'.7196

	Fix'Q 
	50.4930N/13.8412W
	59.1003S/85.8155E
	

	Backw. pos.
	50.3101N/14.6295W
	59.2832S/84.8344E
	



[image: image3.emf]50.3496 N

14.0474 W

0 5 10 nm

DR at Moon 

p

S

Z

n

S

1

0

6o

.

5

4

P

L

 

S

u

n

P

L

 

M

o

o

n

 t

ra

n

s

fe

r

re

d

r

u

n

 

a

t 

7

0

o

 

a

n

d

 

1

2 

k

n

/

h

r

; 

d

 

=

 

3

2'

.

1

p

M

PL

 

M

o

o

n

50.4930 N/13.8412 W (with LSQ*)

Fix'

Q

DR at Sun 

Fix

Q

p

M

= p

Moon 

=7'.66

p

S

= p

Sun

= 5'.09

t

r

a

n

s

f

e

r

r

e

d

 

r

u

n

 

(

L

S

Q

*

)

J

1

Z

n

S

1

0

6o

.

7

6

Fix

Q

50.5117 N/13.8323 W (with GD-UT+K-Z)

Fix'

Q

 

Z

n

M

=

 

?

Z

n

M

Z

n

M

1

7

3

o

.

5

6

 

t

r

a

n

s

f

e

r

r

e

d

 

r

u

n

 

(

R

F

T

)

D

J*

1

Z

n

M

 

a

s

s

u

m

e

d

 

1

7

3

o

.

3

4

 

J

2

1

7

3

o

.

3

4

 


Fig 3: LSQ* transfer in the Moon-run-Sun case (NH)

This reflects the plane-geometric construction principles built into LSQ* as an algorithm or program procedure. Noted is that the respective Zn in the left part of Table 1 are not the azimuths from the fixes, but from the backward-projected positions!  LSQ* cannot compute the Zn of the Moon from the fix.  As a matter of interest, the distance between Fix'Q with LSQ* and FixQ with GD-UT+K-Z for the NH is 1'.25 and for the SH it is 27'.75.  The latter difference is large.  
The constant azimuth assumption may be gauged from Fig 3.  The Zn from J*1 is assumed to be the same as the Zn from J1 which is computed, or if the Fix is considered, the Zn from the Fix is assumed to be the same as the Zn from the backward-projected position at D (computed).  The constant azimuth assumption is both the linchpin and of course the downfall of celestial RFT as a reliable transfer technique. As is seen from Fig 3, at the initial DR position (NH) the computed azimuth is 173o.34 and from position D it is 173o.56.  A difference in position of some 10' in this case produces a change in azimuth of 0o.22, an (adverse) trade-off which is actually much greater than predicted by Kaplan for mid-latitudes.    
The situation with the fixes in the NH and SH is depicted in Fig 4.  Two equivalent approaches are now possible, one illustrated with Fig 4a and the other with Kaplan’s equations in Fig 4b.  These two approaches will of course yield identical results in terms of the implied transfer of the earlier sight’s GP and I will only pursue the numerical analysis with Kaplan’s equations.   

In Fig 4a, the following equations apply: 

    
SinDec* = SinLatFixSinHo + CosZnCosLatFixCosHo 

Cosβ* = (SinHo - SinLatFixSinDec*)/CosLatFixCosDec*.
The Dec* and GHA* computed respectively for the NH and SH with these equations will differ.  The same results are also obtained by applying G.H. Kaplan’s “adjustment of celestial coordinates” (see Fig 4b).  

Kaplan’s equations are:  

GHA* = - λ0 ± arcCos[(SinHc - Sinφ0Sind)/(Cosφ0Cosd)], + if 180o ≤ Zn ≤ 360o, - otherwise ... (1)

(if GHA* > 360, deduct 360; if GHA* < 0, add 360)

Sind = Sinφ0SinHc+ Cosφ0CosHcCosZn ... (2)


Dec* = arctan(Sind/Cosd) and Cosd = (1-Sin2d)½ ... (3).
Kaplan states that the celestial RFT equations do not involve C (course), S (speed) or Δt (time difference between initial and final run position), but in fact the coordinates of the initial position and final position used in the equations imply all three run data.  The introduction of assumed positions without which celestial RFT cannot be implemented as an algorithm, are part of its problem.  But of course the results obtained with Kaplan’s equations will be unaffected by what particular (DR) positions are assumed.
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Fig 4: Sketch of the Moon-run-Sun case

Kaplan provides no derivation or numerical example, but to solve these equations obviously needed are the preliminary values SinHc and CosZn (see Boxes 1 and 2).
For the preliminary data (SinHc and Zn), see the Intercept Method results for the Moon in Table 1.  Applied to the Moon-run-Sun case the adjustments involve the following numerical results:

	
	NH
	SH
	
	NH
	SH

	Hc
SinHc
Zn
CosZn
φ0
λ0
Sind
	17.5393
0.3014
173.3532
-0.9933
50.3496
-14.0474
-0.3723
	17.8403
0.3064
256.6775
-0.2304
-59.4000
85.1000
-0.3754
	d
TanDec*
Dec*
Cosd
CosMD*
MD*
GHA*
	-21.8584
-0.4012
-21.8584
0.9281
0.9929
6.8296
7.2178
	-22.0466
-0.4050
-22.0466
0.92688
-0.0354
92.0312
6.9312


 As is seen, the Kaplan-adjusted coordinates GHA* and Dec* of the transferred Moon sight are different for the NH and SH.  This in itself already shows that these fixes cannot lie on a uniquely transferred COP.  The Hc,NH and Hc,SH are different too, but this difference relates to the constant, observed Ho (and Zd as radius of the COP) of the Moon and the intercept adjustments for the incorrect, assumed (DR) positions. Kaplan’s adjusted coordinates processed with LSQ (not LSQ*!) then give the results in Table 2.

	Box 1:  Preliminary values of SinHc and CosZn (see Fig 4b)
For the NH in triangle PZ1X at Moon sight (Lat Z1 = φ1,p):  SinHc,NH = Sinφ1,pSinDecMoon + Cosφ1,pCosDecMoonCosMD1. For the SH in triangle PZ2X at Moon sight follows (Lat Z2 = φ2,p):  SinHc,SH = Sinφ2,pSinDecMoon + Cosφ2,pCosDecMoonCosMD2. Zn may be calculated with the quadrantal version used by Yallop-Hohenkerk: X = Cosφp SinDec - SinφpCosDecCosLHA; Y = -CosDecSinLHA; TanZ = Y/X; if X < 0 -> Zn = Z + 180; if X > 0 and Y < 0 -> Zn = Z + 360; otherwise Zn = Z.  The φp and LHA are of course specific to the NH and SH positions.


	Box 2: Derivation of Kaplan’s adjusted coordinates for a GP transferred with celestial RFT (see Fig 4b)

NH: As Zn1 at Z1 is postulated to remain constant at Z*1 (angle PZ1X = angle PZ*1X*) and also SinHc,NH remains constant, Sind in Eq. (2) follows from triangle PZ*1X*.  From the same triangle follows CosMD*1 = (SinHc,NH - Sinφ1,0Sind)/(Cosφ1,0Cosd); the GHA adjusted for the run data or GHA* is given by Eq. (1) as GHA* = - λ1,0 ± MD*1 (+ if Zn1 > 180o , - if < 180o).  Dec* follows from Eq. (3).  

SH: As Zn2 at Z2 with celestial RFT is postulated to remain constant at Z*2 (angle PZ2X = angle PZ*2X*) and also SinHc,SH remains constant, Sind in Eq. (2) follows from triangle PZ*2X*, i.e 

Cos(360-Zn2) = [Cos(90-d) - Cos(90-Hc,SH)Cos(90-φ2,0)]/Sin(90-Hc,SH)Sin(90-φ2,0), hence

CosZn2 = (Sind - SinHc,SHSinφ2,0)/CosHc,SHCosφ2,0, and

Sind = Sinφ2,0SinHc,SH + Cosφ2,0CosHc,SHCosZn2, which is Eq. 2.

It of course proves that Kaplan’s equations hold for any celestial RFT configuration.  From the same triangle PZ*2X* follows CosMD*2 = (SinHc,SH - Sinφ2,0Sind)/(Cosφ2,0Cosd), so that the GHA adjusted for the run data or GHA* is given by Eq. (1) as GHA* = - λ2,0 ± MD*2 (+ if Zn > 180o , - if < 180o).  Dec* follows from Eq. (3).



     Table 2: Position solutions with Kaplan-adjusted GHA* and Dec* of the Moon 
 
 
 
 
	
	Based on the observer's position in the NH
	Based on the observer's position in the SH

	
	NH fix 
	Implied SH fix
	Implied NH fix
	SH fix 

	
	Moon
	Sun
	Moon
	Sun
	Moon
	Sun
	Moon
	Sun

	GHA*
Dec*
Ho
	7.2178
-21.8584
17.4117
	309.1783
5.2050
19.9450
	7.2178
-21.8584
17.4117
	309.1783
5.2050
19.9450
	6.9312
-22.0466
17.4117
	309.1783
5.2050
19.9450
	6.9312
-22.0466
17.4117
	309.1783
5.2050
19.9450

	DR at Sun sight
	50.3496 N/14.0474 W
	59.4000 S/85.1000 E
	50.3496 N/14.0474 W
	59.4000 S/85.1000 E

	LHA
Hc
X
Y
TanZ
Z
Zn
e (n.m)
	353.3767
17.4117
-0.9482
0.1070
-0.1129
-6.4415
173.5585
0.0000
	295.3372
19.9450
-0.2711
0.9001
-3.3200
-73.2376
106.7624
-0.0000
	92.5265
17.4117
-0.2253
-0.9272
4.1158
76.3438
256.3438
-0.0000
	394.4870
19.9450
0.7521
-0.5639
-0.7497
-36.8602
323.1398
0.0000
	352.9878
17.4117
-0.9474
0.1132
-0.1194
-6.8106
173.1894
0.0000
	295.2349
19.9450
-0.2686
0.9008
-3.3542
-73.3988
106.6012
0.0000
	92.7508
17.4117
-0.2309
-0.9258
4.0089
75.9937
255.9937
-0.0000
	394.9979
19.9450
0.7466
-0.5712
-0.7651
-37.4181
322.5819
-0.0000

	Fix (3rd it.)
	50.4931 N/13.8411 W
	59.2969 S/85.3087 E
	50.2755 N/13.9434 W
	59.0987 S/85.8195 E


The same results (shown as NH fix and SH fix) would obtain if the processing were done with a double-sight solution procedure like K-Z.  As expected, LSQ* gives fixes in the NH and SH (see Table 1) which are virtually the same as the NH fix and SH fix when using LSQ with Kaplan’s equations.  But quite clearly, the fixes cannot lie on the same COP. The coordinates of the presumed transferred COP with GHA 7.2178, Dec -21.8584 would be consistent with a SH fix of 59.2969 S/85.3087 E, but celestial RFT determines this SH fix as 59.0987 S/85.8195 E. Conversely, GHA 6.9312, Dec -22.0466 would be consistent with a NH fix of 59.2755 N/13.9434 W, but celestial RFT determines this NH fix as 50.4931 N/13.8411 W.  The discrepancies are large.

No unique transfer of the GP of the Moon occurs for given run data (70o/32'.1).  On the contrary, the implied transfer of the original GP changes with the particular geographic location of the run, a conclusion already reached before, also with the due north double sight in my Forum response.  
7.  The 'due-North' transfer of a COP 
The analysis of the Moon-run-Sun case in Section 6 is in itself proof that celestial RFT cannot determine reliable double-sight fixes.  I will nonetheless also look again at the due-North configuration introduced in my Forum article.  
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Fig 5: Vessels simultaneously going due N from A, B and C

Huxtable’s notions related to it were already indicated in Section 1. Unlike in plane geometry, in spherics even COPs passing respectively through pairs of such points like A* and B*, A* and C*, B* and C* are not correctly transferred COPs.  This is demonstrated numerically in Table 3a.  The H*o and Dec* results are obtained from (* and '* stand for the respective transferred positions):


SinH*o = SinLatZ*SinDec* + CosLatZ*CosDec*CosLHA*


SinH*o = SinLatZ'*SinDec* + CosLatZ'*CosDec*CosLHA'*.
Table 3a: Celestial RFT and the transferred COP-radius problem 

	
	Computing H*o and Dec* of pairs of positions:

	
	A>A* & B>B*
	A>A* & C>C*
	B>B* & C>C*

	LHAZ*
LHAZ'*
CosLHAZ*
CosLHAZ'*
SinLatZ*
SinLatZ'*
CosLatZ*
CosLatZ'*
	 
 
a1
a2
b1
b2
c1
c2
	 0.0000 
45.0000 
 1.0000 
 0.7071 
 0.8746 
 0.7193 
 0.4848 
 0.6947 
	 0.0000 
60.0000 
 1.0000 
 0.5000 
 0.8746 
 0.0175 
 0.4848 
 0.9998 
	60.0000 
45.0000
 0.5000 
 0.7071 
 0.0175 
 0.7193 
 0.9998 
 0.6947 

	TanDec* = (a2c2-a1c1)/(b1-b2)
Dec* 
	 0.0411 
 2.3557 
	 0.0176 
 1.0102 
	 0.0124 
 0.7123 

	SinDec*
CosDec*
	d1
d2
	 0.0411 
 0.9992 
	 0.0176 
 0.9998 
	 0.0124 
 0.9999 

	SinH*o = b1d1+a1c1d2 (1)
SinH*o = b2d1+a2c2d2 (2)
H*o 
	 0.5204 
 0.5204 
31.3557 
	 0.5002 
 0.5002 
30.0102 
	 0.5001 
 0.5001 
30.0068 


When the run is 1o due N, the COPs passing through pairs of positions A* and B*, A* and C*, B* and C* have Zds or radii 90 - 31.3557 = 58.7443, 90 - 30.0102 = 59.9898 and 90 – 30.0068 = 59.9932 and not 90 - 30 = 60. None of these COPs therefore represent correctly transferred COPs. The implied transferred position circles are also all different: there is no unique transfer. The implied transfer of the original COP’s GP is also not in accordance with the run data.  The GHA* and Dec* for the pairs of positions are respectively 0o/2o.3557, 0o/1o.0102, 0o/0o.7123.

The movements from A* to A, B to B* and C to C* can also be analyzed with Kaplan’s equations, as in Table 3b.  Rather significantly, the only transfer which happens to be compatible with the plane-geometric transfer requirements is the transfer from A to A*.  The reason for this is that in this case the azimuth from the initial position and from the position at the end of the run are indeed the same. When the movement is from B to B* or from C to C*, the azimuth from B and C cannot remain the same as the azimuth from B* and C* and consequently the plane-geometric construction principle underlying celestial RFT breaks down.  
If the Zd is assumed to remain constant in the transfer, the implied coordinates of the transferred GP*s are respectively GHA* 0.0044/Dec* 0.7071 and GHA* 0.0038/Dec* 0.5000.  But as the GP has to move due north, GHA* should be exactly 0o.  The transfer of the GP implied with celestial RFT contradicts the principle of a constant Zd = 90 - Ho (see “Check”).

Table 3b: Celestial RFT and anomalous properties of presumed transferred COPs in the due-North configuration
	Movement of vessel (see Fig 5) >
	A to A* 
	B to B*
	C to C*

	LatZ 
LongZ 
Dec 
GHA 
LHA = GHA + LongZ (W = -; E = +)
SinHc = SinLatZSinDec+CosLatZCosDecCosLHA
Hc 
X = CosLatZSinDec-SinLatZCosDecCosLHA
Y = -CosDecSinLHA
TanZ = Y/X
Z 
X < 0 --> Zn = Z + 180 
X > 0 and Y < 0 --> Zn = Z + 360
Otherwise Zn = Z
LatZ* 
CosZn 
Sind = SinLatZ*SinHc+CosLatZ*CosHcCosZn
d 
CosMD* = (SinHc-SinLatZ*Sind)/CosLat Z*Cosd
MD* 
LongZ* 
GHA* = -LongZ* + or - MD*
TanDec* = Sind/Cosd
Dec* 
	60
0
0
0
0.0000
0.5000
30.0000
-0.8660
0.0000
0.0000
0.0000
180.0000
 
61.0000
-1.0000
0.0175
1.0000
1.0000
0.0000
0.0000
0.0000
0.0175
1.0000
	45
45.0000*
0.0000
0.0000
45.0000
0.5000
30.0000
-0.5000
-0.7071
1.4142
54.7356
234.7356
 
 
46.0000
-0.5774
0.0123
0.7071
0.7071
45.0044
45.0000
0.0044
0.0123
0.7071
	0
60
0
0
60.0000
0.5000
30.0000
0.0000
-0.8660
inf.

-90.0000
 
270.0000
 
1.0000
0.0000
0.0087
0.5000
0.4999
60.0038
60.0000
0.0038
0.0087
0.5000


	Check on radius Zd = 90-H*o
	A to A* 
	B to B*
	C to C*

	SinH*o = SinLatZ*SinDec*+CosLatZ*CosDec*CosLHA
H*o 
	0.5000
30.0000
	0.5000
30.0025
	0.5001
30.0038


                           *LongB = Cos-1(Sin30/Cos45)
8  Numerical aspects of the special due-North double-sight configuration

Fig 6 depicts this configuration once more. That the position fixes are correct when applying celestial RFT is shown when processing this configuration with LSQ* (see Table 4).
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Fig 6: The Due-North double sight case 

As with the Moon-run-Sun case, the LSQ* position solution simulates the plane-geometric principle of the backward-projected position: the backward-projected positions from the fixes in the NH and SH (at J* and J'* in Fig 5) lie exactly 1o or 60' from the initial positions (at respectively J and J') on the original 1st sight’s COP.  This seems to unequivocally prove the correctness of the celestial RFT transfer.
Table 4: Position solutions with LSQ* for the due-North double sight case in Fig 5  

	
	Northern Hemisphere 
	Southern Hemisphere

	
	Sight 1
	Sight 2
	Sight 1
	Sight 2

	GHA
Dec
Ho
	0.0000
0.0000
30.0000
	45.0000
1.0000
45.0000
	0.0000
0.0000
30.0000
	45.0000
1.0000
45.0000

	DR at sight 2
	45.9000N/44.1000W
	44.3000S/45.2000W

	LHA
Hc
X
Y
TanZ
Z
Zn*
p
	315.0000
30.0
-0.5000
0.7071
-1.4142
-54.7356
125.2644
0'.0000
	360.0000
45.0
-0.7071
0.0000
-0.0000
-0.0000
180.0000
0'.0000
	315.0000
30.0
0.5000
0.7071
1.4142
54.7356
54.7356
0'.0000
	360.0000
45.0
0.7071
0.0000
0.0000
0.0000
0.0000
0'.0000

	Fix (4th it.)
	46.0000N/45.0000W
	44.0000S/45.0000W

	Backw.-pr. pos.
	45.0000N/45.0000W (from fix)
	45.0000S/45.0000W (from fix)


                              *Zn computed from the backward-projected positions
LSQ* cannot compute the implied coordinates of the transferred GP, but again, the Kaplan equations can (see Table 5).

Table 5: The Due-N double-sight fixes analyzed with Kaplan’s equations

and for the COP passing through the fixes  

	
	NH
	SH
	Transferred positions on same meridian:

	LatJ
LongJ
Dec
GHA
LHA = GHA + λp 
SinHc 
Hc
X 
Y 
TanZ = Y/X
Z
X < 0 → Zn = Z + 180 
X > 0 and Y < 0 → Zn = Z + 360
Otherwise Zn = Z
LatJ*
CosZn
Sind 
d
CosMD* 
MD*
λ0 = LongJ*
GHA* = - λ0 ± MD*
TanDec* = Sind/Cosd
Dec*
	45.0000
-45.0000
0.0000
0.0000
315.0000
0.5000
30.0000
-0.5000
0.7071
-1.4142
-54.7356
125.2644
 
 
46.0000
-0.5774
0.0123
0.7071
0.7071

45.0044

-45.0000
359.9956

0.0123
0.7071
	-45.0000
-45.0000
0.0000
0.0000
315.0000
0.5000
30.0000
0.5000
0.7071
1.4142
54.7356
 
 
54.7356
-44.0000
0.5774
0.0123
0.7071
0.7071

45.0044

-45.0000
359.9956

0.0123
0.7071
	LHAJ* and LHAJ’*
CosLHAJ* and CosLHAJ'*
SinLatJ*
SinLatJ'*
CosLatJ*
CosLatJ'*
TanDec* = (a1c2-a1c1)/(b1-b2)
Dec* 

SinDec*
CosDec*
SinH*o = b1d1+a1c1d2 (1)
SinH*o = b2d1+a1c2d2 (2)         

H*o

	- 
a1
b1
b2
c1
c2
-

-
d1
d2
-

-
-


	315.0000 
0.7071 
0.7193 
-0.6947 
 0.6947 
 0.7193 

  0.0123 
  0.7071 

  0.0123 
  0.9999 
0.5000

0.5000
30.0025


	Check on radius:
	
	
	

	SinH*o 
H*o
	0.5000
30.0025
	0.5000
30.0026
	
	
	


Similar contradictions as with the simple due-N configuration show up. The anomalous implied GHA* is not compatible with the constant Zd assumption.  The implied H*o is not compatible with a constant radius.  There are two implied COPs with respectively 359.9956 - 0.7071 - 30 and 0 - 0.7071 - 30.0025.  Analyzed as a double sight with K-Z they indicate the same fixes, but contradictory Zn and LHA values.  There should only be one transferred COP.

9 The 0 - 0 - 30 COP and due-North transfer with different 2nd sight combinations. 
For reasons of space I am leaving out detail of some intermediate results.  The computation procedures are the same as in Section 8. In all cases the run data remain at 1o due north. First compute the alternative fixes with LSQ* as in Table 4 for the 0 - 0 - 30/45 - 1 - 45 combination.  Next, proceed as with the Kaplan and other equations in Table 5.  The results are summarized in Table 6.  

Table 6: Implied properties of the 0 - 0 - 30 COP transferred with celestial RFT 

for different 2nd sights 

	 
	with 45-1-45 
	with 72-36-48
	with 280-35-58

	 
	NH
	SH
	Northerly
	Southerly
	Northerly
	Southerly

	LSQ* results:

	Fix 

Backw. 

LHA

Zn
	46.0000/-45.0000
45.0000/-45.0000
315.0000/360.0000
125.2644/180.0000
	-44.0000/-45.0000
-45.0000/-45.0000
315.0000/360.0000
54.7356/0.0000
	59.4421/-17.1830
58.4421/-17.1830
342.8170/54.8170
160.0544/261.1823
	-4.4290/-59.8508
-5.4290/-59.8508
300.1492/12.1492
86.8546/345.2587
	49.6674/40.7923
48.6674/40.7923
40.7923/320.7923
228.9718/102.2703
	8.9502/59.6785
7.9502/59.6785
59.6785/339.6785
265.3752/32.4688

	Using Kaplan’s equations:

	GHA* 
Dec*
	359.9956
0.7071
	359.9956
0.7071
	359.9975
0.9554
	359.9962
0.5022
	0.0043
0.7571
	0.0038
0.5048

	Check:

	H*o 
	30.0025
	30.0026
	30.0004
	30.0038
	30.0021
	30.0037

	Using alternative equations:

	
	same meridian:
	different meridian:
	different meridian:

	Dec*
H*o
	0.7071
30.0025 
	0.9181

29.9637 
	0.8218

30.0586 


As is seen from Table 6, in all combinations, the original sight’s GHA* implies an anomalous transfer, incompatible with the due-north movement of the observer.  Also, the combination with a different 2nd sight produces different GHA* and Dec* coordinates.  In other words, there is no unique transfer of the original position circle for given run data: the coordinates of the transferred GP change depending on the geographic location of the run.  The Kaplan results imply varying GHA* and Dec* coordinates for the observed Zd = 90 – Ho = 60o.  And the alternative equations imply a Zd which is not equal to 60o.  The implied transfer is in each case incompatible with the movement of the observer (the run data).  

10  The 'Due-North' transfer of a COP and the transfer of cardinal positions

The implied transferred COPs of the due-north configurations based on celestial RFT* can also not be correct because they cannot account for the movement of observers at the cardinal N and S positions going in the same cardinal direction.  By using any of the previous methods it is clear that a COP passing through A* and A'* must have the properties GHA* 0o, Dec* 1o, H*o = Ho = 30o. A simple check is that SinHo = Sin61Sin1 + Cos61Cos1Cos0 (NH) = Sin-59Sin1 + Cos-59Cos1Cos0 (SH) = 0.5000 and Ho = 30.  In other words, the Zd (radius) 90 - 30 = 60 remains constant, which is a foremost criterion in celestial navigation transfer theory.  Also, the GP transfers according to the relative movement imparted by the given run data.   
In all other instances the Zd (radius) cannot remain the same.  The COP through A* and A'* is in fact transferred through GD-UT. As mentioned already, the transfer through celestial RFT achieves the same results because in this particular case it does not violate the principle as in all other cases that the azimuths from the initial and final position of the observer cannot remain constant.  
� 	Significantly as we will see, the only correctly transferred position circle is the one passing through the cardinal positions.


� 	G.H. Kaplan - “The Motion of the Observer in Celestial Navigation”, Navigator’s Newsletter, no. 51, 1996.  I received a copy through Andres Ruiz.  George Kaplan himself has meanwhile also sent me a copy of his paper.  I am obliged to both persons for helping me out in this way.    


� 	The equation of the curve representing a position circle on the chart.  Projected on a Mercator chart, the position circle only becomes a quasi-circle acceptably close to a circle, when the latitude of the observer and the declination of the a body are the same or reasonably close.    


� 	The exception is the special situation of a movement in a cardinal direction from initial positions at the position circle’s cardinal points.  The reason for this exception is that in this situation the azimuth from p indeed remains the same as the azimuth from p0  (see Section 9).


� 	The Intercept Method corrects any assumed (DR) position to make it consistent with the observed GHA, Dec and Ho.  The only effect of the assumed position is that the position on the position circle is uncertain.  


� 	The model first appeared in The Navigator’s Newsletter no. 86, 2005.  Also see my book K.H. Zevering – Celestial Navigation, 2008, (revised) 2010, Section A1-5. 


� 	ANM, Vol II, p191-195.  The ANM even describes this case as “a straightforward and common type of double sight in which the first position line is transferred for the run between sights..”. 
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