Sun - Moon - Jupiter observations, 9 Feb 2011

Averages of altitudes and distances:

WT | | $00^{\mathrm{h}} 02^{\mathrm{m}} 56^{\mathrm{s}}$ | Sun LL | $11^{\circ} 19,4$, |
| :--- | :--- | :--- | :--- |
| $01^{\mathrm{h}} 42^{\mathrm{m}} 36^{\mathrm{s}}$ | Moon LL | $57^{\circ} 19,2^{\prime}$ | |
| $01^{\mathrm{h}} 49^{\mathrm{m}} 16^{\mathrm{s}}$ | Jupiter | $31^{\circ} 42,4$, | |
| | $02^{\mathrm{h}} 07^{\mathrm{m}} 17^{\mathrm{s}}$ | Jupiter - Moon near | $29^{\circ} 38,4$, |

The moon's altitude changes $-18,4^{\prime} / 04^{m} 32^{\mathrm{s}}$; during the time interval until the lunar observation of $24^{\mathrm{m}} 41^{\mathrm{s}}$ this gives $-18,4^{\prime} \times 1481^{s} / 272^{s}$, assuming no calculator is available:

1481	\log	3,171
272	\log	$\underline{2,435}$
		0,736
18,4	\log	$\underline{1,265}$
	\log	2,001

This \log equals $100^{\prime}=1^{\circ} 40^{\prime}$, resulting in a moon altitude at the time of the lunar of $55^{\circ} 39^{\prime}$.
The same calculation for Jupiter, $-31,1^{\prime} / 03^{m} 57^{s}$, during $18^{m} 01^{s}$ gives $-31,1^{\prime} \times 1081^{s} / 237^{s}$

1081	\log	3,034
237	\log	$\underline{2,375}$
		0,659
31,1,	\log	$\underline{1,493}$
	\log	2,152

equaling $142^{\prime}=2^{\circ} 22^{\prime}$, resulting in Jupiter's altitude at the time of lunar $29^{\circ} 20^{\prime}$.
Using Stark's tables with above extrapolated altitudes gives a cleared lunar distance of $30^{\circ} 19,7^{\prime}$ corresponding to

GMT	$18^{\mathrm{h}} 08^{\mathrm{m}} 09^{s}$
WT	$02^{\mathrm{h}} 07^{\mathrm{m}} 17^{\mathrm{s}}$
WE $_{\text {GMT }}$	$16^{\mathrm{h}} 00^{\mathrm{m}} 52^{\mathrm{s}}$

Details of the lunar clearing are given on the last page.
The sextant altitude of the Sun corrected according to the tables in NA gives an observed altitude of $11^{\circ} 27,0^{\prime}$. With an assumed latitude of $47^{\circ} \mathrm{N}$ (Nantes area), this altitude is used to find the local hour angle and the azimuth. Declination as per NA at GMT $16^{\mathrm{h}} 03^{\mathrm{m}} 48^{\mathrm{s}}$ of $14^{\circ} 38,3^{\prime} \mathrm{S}$.

Latitude	47°	$\log \mathrm{sec}$	0,16622		$\log \sec 0,16622$
Polar distance	104 ${ }^{\circ} 38,3^{\prime}$	log cosec	0,01433	hav 0,62636	
Altitude	$11^{\circ} 27,0^{\prime}$				$\log \sec 0,00873$
sum	$162^{\circ} 65,3^{\prime}$				
half	$81^{\circ} 32,7$,	$\log \cos$	9,16741		
Altitude	$11^{\circ} 27,0^{\prime}$				
remainder	$70^{\circ} 05,7 \times$	$\log \sin$	9,97325		
		\log hav	9,32121		
Latitude-Alt.	$35^{\circ} 33$,			hav $\underline{0,09320}$	
				hav 0,53316	log hav 9,72686
					log hav 9,90181

The log hav of 9,32121 gives LHA $54^{\circ} 28,9^{\prime}$. This local hour angle corresponds to local apparent time

LAT	$3^{\mathrm{h}} 37^{\mathrm{m}} 56^{\mathrm{s}} \mathrm{pm}$
	12^{h}
EoT	$\frac{14^{\mathrm{m}} 12^{\mathrm{s}}}{15^{\mathrm{h}} 52^{\mathrm{m}} 08^{\mathrm{s}}}$
LMT	$\frac{16^{\mathrm{h}} 03^{\mathrm{m}} 48^{\mathrm{s}}}{11^{\mathrm{m}} 40^{\mathrm{s}}}$ which equals a longitude of $2^{\circ} 55^{\prime} \mathrm{W}$.
GMT	time diff

The \log hav of 9,90181 gives the sun's azimuth $\mathrm{N} 127^{\circ} \mathrm{W}$, or 233°. Now we have a sun LOP passing through $47^{\circ} \mathrm{N} 2^{\circ} 55^{\prime} \mathrm{W}$ at right angle to the azimuth, or 143°, on (or near) which the observer was located. Crossing with a moon LOP will give the place.

Correcting the sextant altitude of the moon observation as per tables in NA gives an observed altitude of $57^{\circ} 58,9^{\prime}$.

This last haversine gives the zenith distance, but with a properly arranged table the altitude can be read directly as
Altitude calc. $\quad 57^{\circ} 48,6^{\prime}$
Altitude obs. $\quad 57^{\circ} 58,9^{\prime}$
intercept $\quad 10,3$ ' towards
The azimuth is easily found with the use of ABC-tables:
A $\quad 4,64$
B $-1,33$
C $\quad 3,31$ giving the azimuth as 204°

Now it remains to plot the two LOPs, or to calculate the fix using a traverse table:
We have a right-angled triangle with one corner at the assumed latitude $47^{\circ} \mathrm{N}$ and the calculated longitude $2^{\circ} 55^{\prime}$ W. From this point we have the intercept of $10,3^{\prime}$ in direction 204°, then a right angle, then a side with unknown length in direction $204^{\circ}-90^{\circ}=114^{\circ}$, crossing the sun LOP (hypotenuse) that starts in the given position and runs in direction 143°. The crossing angle is found to be $143^{\circ}-114^{\circ}=29^{\circ}$ and thus the length of the hypotenuse can be calculated as $10,3^{\prime} / \sin 29^{\circ}$, or more conveniently as $10,3^{\prime} \mathrm{x} \operatorname{cosec} 29^{\circ}$ if logarithms are used.

$10,3^{\prime}$	\log	1,013
29°	$\log \operatorname{cosec}$	$\underline{0,314}$
	\log	1,327

This logarithm corresponds to a distance of $21,2^{\prime}$, sailed on course of 143°, from the given start position. From the traverse table we find a dLat of $17^{\prime} \mathrm{S}$ and a departure of $12,8^{\prime} \mathrm{E}$. The departure is converted to a dLong of $18,7^{\prime}$ E. We now get the position of the fix as

```
Latitude 46043'N
Longitude 2'36'W
```

Compared with the published known position of N4642.9W00223.7, my latitude is spot on and my longitude only 12^{\prime} or 48^{s} off.

Clearing of lunar according to Stark's method and table. Those who have the form available will be able to follow and check the calculations.

Height of eye 17 feet, HP 54,6'

$29^{\circ} 20,0 \cdot$	$55^{\circ} 39,0 \times$		
4, ${ }^{\prime}$	$10.8{ }^{\prime}$		
$29^{\circ} 16,0^{\prime}$	$55^{\circ} 49,8^{\prime}$	29,12'	534,7
	$29^{\circ} 16,0^{\prime}$	0,91,	17,0
	$26^{\circ} 33,8$,	1,73'	0,0
	31, 8^{\prime}	31,76,	551,7
	$27^{\circ} 05,6$ '		
15,1'			
$\underline{29} 38,4^{\prime}$			
29 ${ }^{\circ} 53,5$,			
26 ${ }^{\circ} 33,8^{\prime}$			
$3^{\circ} 19,7$ '		3,07397	
$56^{\circ} 27,3$,		0,65033	
		3,72430	
		1,86215	
		551(,7)	
$27^{\circ} 05,6$	1,26069	1,86767	
	0,09594	1,26069	
	1,16475	0,60698	

The last K-value (which equals a negative log hav) of 1,16475 gives the cleared lunar of $30^{\circ} 19,7^{\circ}$.

Calculation of true distances:
18^{h} GMT

	$\begin{aligned} & 45^{\circ} 47,4^{\prime} \\ & \underline{19^{\circ} 56,6} \\ & \hline \end{aligned}$	
	25 ${ }^{\circ} 50,8$,	1,30087
$16^{\circ} 42,4$		0,01873
$\underline{00^{\circ} 21,0^{\prime}}$		$\underline{0,00001}$
$16^{\circ} 21,4$	1,69387	1,31961
	1,31961	$\underline{0,15303}$
$30^{\circ} 15,8^{\prime}$	0,37426	1,16658

19^{h} GMT
$60^{\circ} 49,4$
$\frac{34^{\circ} 29,3^{\prime}}{26^{\circ} 20,}$
$26^{\circ} 20,1^{\prime} \quad 1,28490$
$16^{\circ} 51,4$ 0,01907
00 ${ }^{\circ} 21,2^{\prime}$
$16^{\circ} 30,2^{\prime}$
1,68617
$\underline{0,00001}$
$30^{\circ} 44,5^{\prime}$
1,30398
1,30398
0,38219
1,15329

3,9’ $\quad 1,7891$
$28,7 \quad \underline{0,9223}$
0,8668 resulting in an observed GMT $\mathbf{1 8}^{\text {h }} \mathbf{0 8} \mathbf{8}^{\mathrm{m}} \mathbf{0} \mathbf{9}^{\text {s }}$

