Sun - Moon - Jupiter observations, 9 Feb 2011

Averages of altitudes and distances:

WT | | $00^{\mathrm{h}} 02^{\mathrm{m}} 56^{\mathrm{s}}$ | Sun LL | $11^{\circ} 19,4$, |
| :--- | :--- | :--- | :--- |
| $01^{\mathrm{h}} 42^{\mathrm{m}} 36^{\mathrm{s}}$ | Moon LL | $57^{\circ} 19,2^{\prime}$ | |
| $01^{\mathrm{h}} 49^{\mathrm{m}} 16^{\mathrm{s}}$ | Jupiter | $31^{\circ} 42,4$, | |
| | $02^{\mathrm{h}} 07^{\mathrm{m}} 17^{\mathrm{s}}$ | Jupiter - Moon near | $29^{\circ} 38,4$, |

The moon's altitude changes $-18,4^{\prime} / 04^{m} 32^{\mathrm{s}}$; during the time interval until the lunar observation of $24^{\mathrm{m}} 41^{\mathrm{s}}$ this gives $-18,4^{\prime} \times 1481^{s} / 272^{s}$, assuming no calculator is available:

1481	\log	3,171
272	\log	$\underline{2,435}$
		0,736
18,4	\log	$\underline{1,265}$
	\log	2,001

This \log equals $100^{\prime}=1^{\circ} 40^{\prime}$, resulting in a moon altitude at the time of the lunar of $55^{\circ} 39^{\prime}$.
The same calculation for Jupiter, $-31,1^{\prime} / 03^{m} 57^{s}$, during $18^{m} 01^{s}$ gives $-31,1^{\prime} \times 1081^{\mathrm{s}} / 237^{\mathrm{s}}$

1081	\log	3,034
237	\log	$\underline{2,375}$
		0,659
31,1,	\log	$\underline{1,493}$
	\log	2,152

equaling $142^{\prime}=2^{\circ} 22^{\prime}$, resulting in Jupiter's altitude at the time of lunar $29^{\circ} 20^{\prime}$.
Using Stark's tables with above extrapolated altitudes gives a cleared lunar distance of $30^{\circ} 19,7^{\prime}$ corresponding to

GMT	$18^{\mathrm{h}} 08^{\mathrm{m}} 09^{s}$
WT	$02^{\mathrm{h}} 07^{\mathrm{m}} 17^{\mathrm{s}}$
WE $_{\text {GMT }}$	$16^{\mathrm{h}} 00^{\mathrm{m}} 52^{\mathrm{s}}$

Details of the lunar clearing are given on page 3 .
The sextant altitude of the Sun corrected according to the tables in NA gives an observed altitude of $11^{\circ} 27,0^{\prime}$. With an assumed latitude of $47^{\circ} \mathrm{N}$ (Nantes area), this altitude is used to find the local hour angle and the azimuth. Declination as per NA at GMT $16^{\mathrm{h}} 03^{\mathrm{m}} 48^{\mathrm{s}}$ of $14^{\circ} 38,3^{\prime} \mathrm{S}$.

Latitude	47°	$\log \sec$	0,16622		$\log \sec 0,16622$
Polar distance	104 ${ }^{\circ} 38,3^{\prime}$	\log cosec	0,01433	hav 0,62636	
Altitude	$11^{\circ} 27,0^{\prime}$				$\log \sec 0,00873$
sum	$162^{\circ} 65,3^{\prime}$				
half	$81^{\circ} 32,{ }^{\prime}$	$\log \cos$	9,16741		
Altitude	$11^{\circ} 27,0^{\prime}$				
remainder	$70^{\circ} 05,{ }^{\prime}$	$\log \sin$	9,97325		
		\log hav	9,32121		
Latitude-Alt.	$35^{\circ} 33^{\prime}$			hav $\underline{0,09320}$	
				hav 0,53316	log hav 9,72686
					log hav 9,90181

The log hav of 9,32121 gives LHA $54^{\circ} 28,9^{\prime}$. This local hour angle corresponds to local apparent time

LAT	$3^{\mathrm{h}} 37^{\mathrm{m}} 56^{\mathrm{s}} \mathrm{pm}$
	12^{h}
EoT	$\frac{14^{\mathrm{m}} 12^{\mathrm{s}}}{15^{\mathrm{h}} 52^{\mathrm{m}} 08^{\mathrm{s}}}$
LMT	$\frac{16^{\mathrm{h}} 03^{\mathrm{m}} 48^{\mathrm{s}}}{11^{\mathrm{m}} 40^{\mathrm{s}}}$ which equals a longitude of $2^{\circ} 55^{\prime} \mathrm{W}$.
GMT	time diff

The log hav of 9,90181 gives the sun's azimuth $\mathrm{N} 127^{\circ} \mathrm{W}$, or 233°. Now we have a sun LOP passing through $47^{\circ} \mathrm{N} 2^{\circ} 55^{\prime} \mathrm{W}$ at right angle to the azimuth, or 143°, on (or near) which the observer was located. Crossing with a moon LOP will give the place.

Correcting the sextant altitude of the moon observation as per tables in NA gives an observed altitude of $57^{\circ} 58,9^{\prime}$.

WT	$01^{\mathrm{h}} 42^{\mathrm{m}} 36^{\mathrm{s}}$
WE $_{\text {GMT }}$	$16^{\mathrm{h}} 00^{\mathrm{m}} 52^{\mathrm{s}}$
GMT	$17^{\mathrm{h}} 43^{\mathrm{m}} 28^{\mathrm{s}}$

This last haversine gives the zenith distance, but with a properly arranged table the altitude can be read directly as
Altitude calc. $\quad 57^{\circ} 48,6^{\prime}$
Altitude obs. $57^{\circ} 58,9^{\prime}$
intercept $\quad 10,3$ ' towards
The azimuth is easily found with the use of ABC-tables:
A $\quad 4,64$
B $-1,33$
C $\quad 3,31$ giving the azimuth as 204°

Now it remains to plot the two LOPs, or to calculate the fix using a traverse table:
We have a right-angled triangle with one corner at the assumed latitude $47^{\circ} \mathrm{N}$ and the calculated longitude $2^{\circ} 55^{\prime}$ W. From this point we have the intercept of $10,3^{\prime}$ in direction 204°, then a right angle, then a side with unknown length in direction $204^{\circ}-90^{\circ}=114^{\circ}$, crossing the sun LOP (hypotenuse) that starts in the given position and runs in direction 143°. The crossing angle is found to be $143^{\circ}-114^{\circ}=29^{\circ}$ and thus the length of the hypotenuse can be calculated as $10,3^{\prime} / \sin 29^{\circ}$, or more conveniently as $10,3^{\prime} \mathrm{x} \operatorname{cosec} 29^{\circ}$ if logarithms are used.

$10,3^{\prime}$	\log	1,013
29°	$\log \operatorname{cosec}$	$\underline{0,314}$
	\log	1,327

This logarithm corresponds to a distance of $21,2^{\prime}$, sailed on course of 143°, from the given start position. From the traverse table we find a dLat of $17^{\prime} \mathrm{S}$ and a departure of $12,8^{\prime} \mathrm{E}$. The departure is converted to a dLong of $18,7^{\prime}$ E. We now get the position of the fix as

Latitude	$46^{\circ} 43^{\prime} \mathrm{N}$
Longitude	$2^{\circ} 36^{\prime} \mathrm{W}$

Clearing of lunar according to Stark's method and table. Those who have the form available will be able to follow and check the calculations.

Height of eye 17 feet, HP 54,6'

$29^{\circ} 20,0 \cdot$	$55^{\circ} 39,0 \times$		
4, ${ }^{\prime}$	10, ${ }^{\prime}$		
$29^{\circ} 16,0^{\prime}$	$55^{\circ} 49,8^{\prime}$	29,12'	534,7
	$\underline{29}{ }^{\circ} 16,0^{\prime}$	0,91,	17,0
	$26^{\circ} 33,8$,	1,73'	0,0
	31, 8^{\prime}	31,76,	551,7
	$27^{\circ} 05,6$ '		
15,1'			
$\underline{29} 38,4^{\prime}$			
29 ${ }^{\circ} 53,5$,			
26 ${ }^{\circ} 33,8^{\prime}$			
$3^{\circ} 19,7$ '		3,07397	
$56^{\circ} 27,3$,		0,65033	
		3,72430	
		1,86215	
		551(,7)	
$27^{\circ} 05,6$	1,26069	1,86767	
	0,09594	1,26069	
	1,16475	0,60698	

The last K-value (which equals a negative log hav) of 1,16475 gives the cleared lunar of $30^{\circ} 19,7^{\circ}$.

Calculation of true distances:
18^{h} GMT

	$\begin{aligned} & 45^{\circ} 47,4^{\prime} \\ & \underline{19^{\circ} 56,6} \\ & \hline \end{aligned}$	
	25 ${ }^{\circ} 50,8$,	1,30087
$16^{\circ} 42,4$		0,01873
$\underline{00^{\circ} 21,0}$		$\underline{0,00001}$
$16^{\circ} 21,4$	1,69387	1,31961
	1,31961	$\underline{0,15303}$
$30^{\circ} 15,8^{\prime}$	0,37426	1,16658

19^{h} GMT
$60^{\circ} 49,4$
$\frac{34^{\circ} 29,3^{\prime}}{26^{\circ} 20,}$
$26^{\circ} 20,1^{\prime} \quad 1,28490$
$16^{\circ} 51,4$ 0,01907
00 ${ }^{\circ} 21,2^{\prime}$
$16^{\circ} 30,2^{\prime}$
1,68617
$\underline{0,00001}$
$30^{\circ} 44,5^{\prime}$
1,30398
1,30398
0,38219
1,15329

3,9’ $\quad 1,7891$
$28,7 \quad \underline{0,9223}$
0,8668 resulting in an observed GMT $18^{\mathrm{h}} 08^{\mathrm{m}} 09^{\text {s }}$

This first result may benefit from a second round of calculations because we have used linearly extrapolated altitudes of Moon and Jupiter for the lunar clearing. Any error in the used rate of change are magnified in the extrapolation, we also know that the rate of change is not constant. On the other hand the lunar clearing is not very sensitive to minor errors in the altitudes. Let us see what happens.
Thus, calculate the altitudes of Moon and Jupiter at the time of the lunar, GMT $18^{\mathrm{h}} 08^{\mathrm{m}} 09^{\mathrm{s}}$, and at the found position, $46^{\circ} 43^{\prime}$ N $2^{\circ} 36^{\prime}$ W. First the Moon:

	$19^{\circ} 56,6^{\prime}\left(13,7^{\prime}\right)$				
	$1^{\circ} 56,7$ '				
	1,9'				
GHA	21 ${ }^{\circ} 55,2^{\prime}$				
Longitude	$2^{\circ} 36$ '				
LHA	19 ${ }^{\circ} 19,2{ }^{\text {, }}$	log hav	8,44959		
Latitude	$46^{\circ} 43^{\prime}$	$\log \cos$	9,83608		
	$16^{\circ} 42,4^{\prime}\left(9,0^{\prime}\right)$				
	1,3'				
Declination	16 ${ }^{\circ} 43,7^{\prime}$	$\log \cos$	$\underline{9,98122}$		
		log hav	8,26689	hav	0,01851
Latitude-Dec.	$29^{\circ} 59,3{ }^{\prime}$			hav	0,06693
				hav	0,08544

This corresponds to an altitude of $56^{\circ} 00,5^{\prime}$ '. It has to be "uncorrected" to sextant altitude:

Calc.alt	$56^{\circ} 00,5^{\prime}$,
$2^{\text {nd }}$ corr in NA	$-2,5^{\prime}$
$1^{\text {st }}$ corr in NA	$-42,3^{\prime}$
App. Alt	$55^{\circ} 15,7^{\prime}$
$1^{\text {st }}$ corr	$+42,8^{\prime}$
$2^{\text {nd }}$ corr	$+2,5^{\prime}$
Res.alt	$56^{\circ} 01,0^{\prime}$

We see that the resulting altitude is 0,5 ' too high, thus we deliberately reduce the apparent altitude by the same amount and check again:

App. Alt	$55^{\circ} 15,2^{\prime}$
$1^{\text {st }}$ corr	$+42,8^{\prime}$
$2^{\text {nd }}$ corr	$+2,5^{\prime}$
Res.alt	$56^{\circ} 00,5^{\prime}$

Now the result agrees with the calculated altitude and by applying the dip correction of $4,0^{\prime}$ we get the sextant altitude of Moon's LL as $55^{\circ} 19,2^{\prime}$.

Same procedure for Jupiter:

	$45^{\circ} 47,4^{\prime}\left(2,0^{\prime}\right)$				
	$2^{\circ} 02,3{ }^{\prime}$				
	0,3'				
GHA	$47^{\circ} 50,0^{\prime}$				
Longitude	$2^{\circ} 36^{\prime}$				
LHA	$45^{\circ} 14,0^{\prime}$	\log hav	9,16994		
Latitude	$46^{\circ} 43^{\prime}$	$\log \cos$	9,83608		
	$0^{\circ} 21,0^{\prime}\left(0,2^{\prime}\right)$				
	0,0'				
Declination	$0^{\circ} 21,0^{\prime}$	log cos	9,99999		
		\log hav	9,00601	hav	0,10139
Latitude-Dec.	$46^{\circ} 22,0^{\prime}$			hav	$\underline{0,15498}$
				hav	0,25637

This corresponds to an altitude of $29^{\circ} 09,6^{\prime}$. It has to be "uncorrected" to sextant altitude:

Calc.alt	$29^{\circ} 09,6^{\prime}$ $+1,7$
corr in NA	
App. Alt	$29^{\circ} 11,3^{\prime}$
Dip	$+4,0^{\prime}$

Comparing with the extrapolated values used earlier, there is a 20 'difference in Moon altitude and 5 'for Jupiter.
Now a second round in Stark's tables:

$29^{\circ} 15,3$ '	$55^{\circ} 19,2$		
4, ${ }^{\prime}$	10, 8^{\prime}		
$29^{\circ} 11,3^{\prime}$	$55^{\circ} 30,0^{\prime}$	29,36'	532,5
	$\underline{29}{ }^{\circ} 11,3^{\prime}$	0,91'	17,0
	$26^{\circ} 18,7$,	1,73'	0,0
	32,0'	32,00,	549,5
	$26^{\circ} 50,7^{\prime}$		

15,1'		
$29^{\circ} 38,4{ }^{\prime}$		
$29^{\circ} 53,5$,		
26 ${ }^{\circ} 18,7^{\prime}$		
$3^{\circ} 34,8^{\prime}$		3,01068
$56^{\circ} 12,2^{\prime}$		0,65389
		3,66457
		1,83228(,5)
		549(,5)
$26^{\circ} 50,7$,	1,26854	1,83778
	0,10368	1,26854
	1,16486	0,56924

The last K-value of 1,16486 gives the cleared lunar of $30^{\circ} 19,5^{\prime}$. A $0,2^{\prime}$ difference from the previous result.

3,7 ${ }^{\prime}$	1,8120	
28,7	0,9223	
	0,8897	resulting in an observed GMT $18^{\mathrm{h}} 07^{\mathrm{m}} 44^{\mathrm{s}}$, and a new watch error:
GMT	$18^{\mathrm{h}} 07^{\mathrm{m}} 44^{\text {s }}$	
WT	$02^{\mathrm{h}} 07^{\mathrm{m}} 17^{\text {s }}$	
$\mathrm{WE}_{\mathrm{GMT}}$	$16^{\mathrm{h}} 00^{\mathrm{m}} 27^{\mathrm{s}}$	

The time sight of the Sun is now reworked with the latitude found earlier:

Latitude	$46^{\circ} 43$,	\log sec	0,16392
Polar distance	$104^{\circ} 38,3$,	$\log \operatorname{cosec}$	0,01433
Altitude	$11^{\circ} 27,0^{\prime}$,		
sum	$162^{\circ} 48,3^{\prime}$		
half	$81^{\circ} 24,2^{\prime}$	$\log \cos$	9,17457
Altitude	$11^{\circ} 27,0^{\prime}$		
remainder	$69^{\circ} 57,2^{\prime}$	log sin	$\underline{9,97286}$
		log hav	9,32568

The log hav of 9,32568 gives LHA $54^{\circ} 47,1^{\prime}$. This local hour angle corresponds to local apparent time
$\begin{array}{ll}\text { LAT } & 3^{\mathrm{h}} 39^{\mathrm{m}} 08^{\mathrm{s}} \mathrm{pm} \\ \text { EoT } & 12^{\mathrm{h}} \\ \text { LMT } & \frac{14^{\mathrm{m}} 12^{\mathrm{s}}}{15^{\mathrm{h}} 53^{\mathrm{m}} 20^{\mathrm{s}}} \\ \text { GMT } & \frac{16^{\mathrm{h}} 03^{\mathrm{m}} 23^{\mathrm{s}}}{} 1^{\mathrm{m}} 03^{\mathrm{s}}\end{array}$ (WT $\left.+\mathrm{WE}_{\mathrm{GMT}}=00^{\mathrm{h}} 02^{\mathrm{m}} 56^{\mathrm{s}}+16^{\mathrm{h}} 00^{\mathrm{m}} 27^{\mathrm{s}}\right)$

Now calculate a new LOP from the Moon altitude observation:

WT	$01^{\mathrm{h}} 42^{\mathrm{m}} 36^{\text {s }}$				
$\mathrm{WE}_{\text {GMT }}$	$16^{\mathrm{h}} 00^{\mathrm{m}} 27^{\text {s }}$				
GMT	$17^{\mathrm{h}} 43^{\mathrm{m}} 03^{\text {s }}$				
	$5^{\circ} 24,0^{\prime}(13,6 \times)$				
	$10^{\circ} 16,3{ }^{\prime}$				
	9,9 ${ }^{\text {, }}$				
GHA	15 ${ }^{\circ} 50,2^{\prime}$				
Longitude	$2^{\circ} 30,8$,				
LHA	$13^{\circ} 19,4{ }^{\prime}$	log hav	8,12896		
Latitude	$46^{\circ} 43$ '	$\log \cos$	9,83608		
	$16^{\circ} 33,3^{\prime}\left(9,1^{\prime}\right)$				
	6,6'				
Declination	$\overline{16^{\circ} 39,9}$	log cos	9,98136		
		log hav	7,94640	hav	0,00884
Latitude-Dec.	$30^{\circ} 03,1{ }^{\prime}$			hav	$\underline{0,06721}$
				hav	0,07605

```
Altitude calc. 57'59,0'
Altitude obs. 57`58,9'
intercept 0,1' away
```

With this small intercept there is no reason to bother with the azimuth calculation and plotting a LOP; we can consider both the sun and the moon altitudes to be valid at the found position of

Latitude
 $46^{\circ} 43$ ' N
 Longitude $\quad 2^{\circ} 31^{\prime}$ W

We have also found that the watch is $\mathbf{1 6}^{\mathbf{h}} \mathbf{0} \mathbf{0}^{\mathbf{m}} \mathbf{2 7}^{\mathrm{s}}$ slow on GMT.
Compared with the published known position of N4642.9W00223.7, the latitude is spot on and the longitude only 7^{\prime} or 28^{s} off.

The "improvement" of 5' longitude achieved compared to the initial solution, a little more than three miles in distance, must be regarded as insignificant for ocean navigation. It is based on a change of the cleared lunar of only $0,2^{\prime}$, thus in the same range as the measurement uncertainty itself. A longitude based on only one short series of lunar distances must be handled with a certain amount of scepticism, and the prudent navigator will use the information accordingly.
The benefit of this recalculation is rather that it confirms the first solution, i.e. no arithmetical blunders seem present. Although many of the logarithms have been reused, it gives a reassurance that the result is trustworthy.

