12 Feb 2011 Unorthodox Jupiter Lunar from a moving platform

Make a table of the vessel's movement:

| WT | Time interval | Course | Speed | Distance | dLat | dep |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $00^{\mathrm{h}} 08^{\mathrm{m}} 55^{\text {s }}$ | Sun altitude |  |  |  |  |  |
|  | $3{ }^{\text {m }}$ | $255^{\circ}$ | 12,0 | 0,60 | -0,16 | -0,58 |
| $00^{\mathrm{h}} 12^{\mathrm{m}}$ | Course change |  |  |  |  |  |
|  | $75^{\text {m }}$ | $184^{\circ}$ | 16,2 | 20,25 | -20,20 | -1,41 |
| $01^{\mathrm{h}} 26^{\mathrm{m}} 58^{\text {s }}$ | Moon altitude |  |  |  |  |  |
|  | $15^{\mathrm{m}}$ | $184^{\circ}$ | 16,2 | 4,05 | -4,04 | -0,28 |
| $01^{\mathrm{h}} 42^{\mathrm{m}} 02^{\text {s }}$ | Jupiter altitude $5^{\mathrm{m}}$ | $184^{\circ}$ | 16,2 | 1,35 | -1,35 | -0,09 |
| $01^{\mathrm{h}} 47^{\mathrm{m}}$ | Course change |  |  |  |  |  |
|  | $3,4^{\mathrm{m}}$ | $135^{\circ}$ | 22,0 | 1,25 | -0,88 | +0,88 |
| $01^{\mathrm{h}} 50^{\mathrm{m}} 21^{\text {s }}$ | Lunar distance |  |  |  |  |  |
|  | Total |  |  |  | -26,6 | -1,5 |

In above table dLat and dep are given in miles and a negative sign indicates S and W , respectively.
To have a starting point for the calculations, we assume the averaged sun altitude observation took place at $47^{\circ} \mathrm{N}, 3^{\circ} \mathrm{W}$. From NA we find Sun's declination S $13^{\circ} 39^{\prime}$. The ho was $7^{\circ} 51,7^{\prime}$. (Here I have used height of eye $6,40 \mathrm{~m}$ that gives a dip of $4,5^{\prime}$. If we instead use 21 feet, we get a dip of $4,4^{\prime}$. The heights are equal within 0,8 mm but gives a $0,1^{\prime}$ difference in dip! Rounding off in tables ...). Anyway, this gives LHA $62^{\circ} 10^{\prime}$ and GHA $65^{\circ} 10^{\prime}$. From the NA we now find an approximate GMT of $16^{\mathrm{h}} 34^{\mathrm{m}} 52^{\mathrm{s}}$. Sun's azimuth is $240^{\circ}$. The watch is thus approx $16^{\mathrm{h}} 25^{\mathrm{m}} 57^{\mathrm{s}}$ slow on GMT.
$78^{\mathrm{m}}$ later, at approx GMT $17^{\mathrm{h}} 52^{\mathrm{m}} 55^{\mathrm{s}}$, the Moon was shot. From the almanac we get GHA $342^{\circ} 15^{\prime}$ and declination N $23^{\circ} 49^{\prime}$. Using the same assumed position as above we find hc $61^{\circ} 30^{\prime}$ and azimuth $137^{\circ}$. With ho $61^{\circ} 41^{\prime}$ we get intercept 11 ' towards. This LOP must however be moved 20 miles north and 2 miles east according to the table above, to get a fix at the time of the sun observation. The resulting fix gives a latitude of around $47^{\circ} 02^{\prime} \mathrm{N}$ and a longitude of $3^{\circ} 02^{\prime} \mathrm{W}$. Applying the total dLat of $-27^{\prime}$ gives latitude $46^{\circ} 35^{\prime} \mathrm{N}$ at the time of the lunar distance observation. This latitude is accurate to within a few minutes of arc, even if the time is in (reasonable) error. Applying the total departure, converted to a dLong of $-2^{\prime}$, gives longitude at the time of lunar observation as $3^{\circ} 04^{\prime} \mathrm{W}$, if the timing is correct. But it will do as a first approximation, making it possible to calculate the Jupiter and Moon altitudes at the lunar distance observation at approx GMT $18^{\mathrm{h}} 16^{\mathrm{m}} 18^{\mathrm{s}}$.

For Jupiter we get GHA $52^{\circ} 15,5^{\prime}$ and declination N $0^{\circ} 36,4^{\prime}$; for Moon GHA $347^{\circ} 53,2^{\prime}$ and declination N $23^{\circ} 49,8$. With latitude $46^{\circ} 35^{\prime} \mathrm{N}$ and longitude $3^{\circ} 04^{\prime} \mathrm{W}$, we get Jupiter hc $27^{\circ} 11,0^{\prime}$ and Moon hc $64^{\circ} 11,4^{\prime}$. Converting to sextant altitudes we have Jupiter hs $27^{\circ} 17,4^{\prime}$ and Moon hs $63^{\circ} 35,8^{\prime}$, as input to the lunar reduction. The cleared lunar becomes $66^{\circ} 24,2^{\prime}$ and we find the GMT $18^{\mathrm{h}} 14^{\mathrm{m}} 15^{\mathrm{s}}$. And the watch $16^{\mathrm{h}} 23^{\mathrm{m}} 54^{\mathrm{s}}$ slow on GMT.
Now, knowing the GMT with higher certainty, we can rework the sun altitude. It was shot at GMT $16^{\mathrm{h}} 32^{\mathrm{m}} 49^{\mathrm{s}}$ and we find the declination from NA as $\mathrm{S} 13^{\circ} 39,0^{\prime}$, no change from the initial assumption. With latitude $47^{\circ} 02^{\prime}$ N and ho $7^{\circ} 51,7^{\prime}$, we get LHA $62^{\circ} 08,7^{\prime}$ corresponding to LAT $4^{\mathrm{h}} 08^{\mathrm{m}} 35^{\mathrm{s}} \mathrm{pm}$. EoT is $14^{\mathrm{m}} 13^{\mathrm{s}}$ so we find LMT $16^{\mathrm{h}} 22^{\mathrm{m}} 49^{\mathrm{s}}$. The difference between GMT and LMT is exactly 10 minutes of time, thus the longitude $2^{\circ} 30^{\prime} \mathrm{W}$. The dLong of -2 ' between sun altitude and lunar distance observations gives the longitude at the time of the lunar distance observation $2^{\circ} 32^{\prime} \mathrm{W}$.

Finally, a check on the Jupiter altitude observation. This was shot at GMT $18^{\mathrm{h}} 05^{\mathrm{m}} 56^{\mathrm{s}}$ giving GHA $49^{\circ} 39,3$ ' and declination $\mathrm{N} 0^{\circ} 36,4^{\prime}$. With latitude $46^{\circ} 37^{\prime} \mathrm{N}$ and longitude $2^{\circ} 33^{\prime} \mathrm{W}$ we get hc $28^{\circ} 22,3^{\prime}$. With ho $28^{\circ} 22,5^{\prime}$ the intercept is negligible.

## Summary: The averaged lunar distance observation was made at GMT $18^{\mathrm{h}} 14^{\mathrm{m}} 15^{\mathrm{s}}$ at latitude $46^{\circ} 35$, N , longitude $2^{\circ} 32^{\prime} \mathrm{W}$. The watch was $16^{\mathrm{h}} 23^{\mathrm{m}} 54^{\mathrm{s}}$ slow on GMT.

Further iterations, easily done on a computer, would probably result in a slightly different result. However, using printed NA data with its limited accuracy sets a lower bound for achievable accuracy. And the lunar distance observation itself, even if correct to $\pm 0,05^{\prime}$, gives a longitude uncertainty of $\pm 1,5^{\prime}$ alone. So, working with paper NA and 5-figure logs, I don't think it is worth the effort. But being nearly $2^{\prime}$ off in latitude is a little annoying

