12 Feb 2011 Unorthodox Jupiter Lunar from a moving platform

WT	Time interval	Course	Speed	Distance	dLat	dep
$00^{h}08^{m}55^{s}$	Sun altitude					
00 ^h 12 ^m	3 ^m Course change	255°	12,0	0,60	-0,16	-0,58
	75 ^m	184°	16,2	20,25	-20,20	-1,41
01"26"58"	Moon altitude 15 ^m	184°	16,2	4,05	-4,04	-0,28
$01^{h}42^{m}02^{s}$	Jupiter altitude	1040	16.0	1.25	1.25	0.00
01 ^h 47 ^m	5 th Course change	184°	16,2	1,35	-1,35	-0,09
01 ^h 50 ^m 21 ^s	3,4 ^m Lunar distance	135°	22,0	1,25	-0,88	+0,88
	Total				-26,6	-1,5

Make a table of the vessel's movement:

In above table dLat and dep are given in miles and a negative sign indicates S and W, respectively.

To have a starting point for the calculations, we assume the averaged sun altitude observation took place at 47°N, 3°W. From NA we find Sun's declination S 13°39'. The ho was 7°51,7'. (Here I have used height of eye 6,40 m that gives a dip of 4,5'. If we instead use 21 feet, we get a dip of 4,4'. The heights are equal within 0,8 mm but gives a 0,1' difference in dip! Rounding off in tables ...). Anyway, this gives LHA 62°10' and GHA 65°10'. From the NA we now find an approximate GMT of $16^{h}34^{m}52^{s}$. Sun's azimuth is 240°. The watch is thus approx $16^{h}25^{m}57^{s}$ slow on GMT.

 78^{m} later, at approx GMT $17^{h}52^{m}55^{s}$, the Moon was shot. From the almanac we get GHA $342^{\circ}15^{\circ}$ and declination N $23^{\circ}49^{\circ}$. Using the same assumed position as above we find hc $61^{\circ}30^{\circ}$ and azimuth 137° . With ho $61^{\circ}41^{\circ}$ we get intercept 11' towards. This LOP must however be moved 20 miles north and 2 miles east according to the table above, to get a fix at the time of the sun observation. The resulting fix gives a latitude of around $47^{\circ}02^{\circ}$ N and a longitude of $3^{\circ}02^{\circ}$ W. Applying the total dLat of -27° gives latitude $46^{\circ}35^{\circ}$ N at the time of the lunar distance observation. This latitude is accurate to within a few minutes of arc, even if the time is in (reasonable) error. Applying the total departure, converted to a dLong of -2° , gives longitude at the time of lunar observation as $3^{\circ}04^{\circ}$ W, if the timing is correct. But it will do as a first approximation, making it possible to calculate the Jupiter and Moon altitudes at the lunar distance observation at approx GMT $18^{h}16^{m}18^{s}$.

For Jupiter we get GHA 52°15,5' and declination N 0°36,4'; for Moon GHA 347°53,2' and declination N 23°49,8. With latitude 46°35' N and longitude 3°04' W, we get Jupiter hc 27°11,0' and Moon hc 64°11,4'. Converting to sextant altitudes we have Jupiter hs 27°17,4' and Moon hs 63°35,8', as input to the lunar reduction. The cleared lunar becomes 66°24,2' and we find the GMT $18^{h}14^{m}15^{s}$. And the watch $16^{h}23^{m}54^{s}$ slow on GMT.

Now, knowing the GMT with higher certainty, we can rework the sun altitude. It was shot at GMT $16^{h}32^{m}49^{s}$ and we find the declination from NA as S $13^{\circ}39,0'$, no change from the initial assumption. With latitude $47^{\circ}02'$ N and ho $7^{\circ}51,7'$, we get LHA $62^{\circ}08,7'$ corresponding to LAT $4^{h}08^{m}35^{s}$ pm. EoT is $14^{m}13^{s}$ so we find LMT $16^{h}22^{m}49^{s}$. The difference between GMT and LMT is exactly 10 minutes of time, thus the longitude $2^{\circ}30'$ W. The dLong of -2' between sun altitude and lunar distance observations gives the longitude at the time of the lunar distance observation $2^{\circ}32'$ W.

Finally, a check on the Jupiter altitude observation. This was shot at GMT $18^{h}05^{m}56^{s}$ giving GHA $49^{\circ}39,3^{\circ}$ and declination N $0^{\circ}36,4^{\circ}$. With latitude $46^{\circ}37^{\circ}$ N and longitude $2^{\circ}33^{\circ}$ W we get hc $28^{\circ}22,3^{\circ}$. With ho $28^{\circ}22,5^{\circ}$ the intercept is negligible.

Summary: The averaged lunar distance observation was made at GMT $18^{h}14^{m}15^{s}$ at latitude $46^{\circ}35^{\circ}$ N, longitude $2^{\circ}32^{\circ}$ W. The watch was $16^{h}23^{m}54^{s}$ slow on GMT.

Further iterations, easily done on a computer, would probably result in a slightly different result. However, using printed NA data with its limited accuracy sets a lower bound for achievable accuracy. And the lunar distance observation itself, even if correct to $\pm 0,05$ ', gives a longitude uncertainty of $\pm 1,5$ ' alone. So, working with paper NA and 5-figure logs, I don't think it is worth the effort. But being nearly 2' off in latitude is a little annoying