# Instructions for Line of Position Navigation Sight Reduction using Stark Lunar Tables 

Robin Stuart

The instructions below refer to line of position (LOP) sight reduction using Stark Tables for clearing lunar distances, B. Stark, Starpath Publications, Seattle, WA (2010).

The terms "Greater of" and "Lesser of" in the following description refer to the magnitudes or absolute values of the quantities concerned.


#### Abstract

Altitude Bring down the longitude of the assumed position (AP) and Greenwich hour angle (GHA) of the celestial object placing the lesser under the greater and add them. Convert the result to a value between $0^{\circ}$ and $360^{\circ}$ by adding or subtracting multiples of $360^{\circ}$. This is the local hour angle (LHA).

If the LHA is greater than $180^{\circ}$ then subtract $180^{\circ}$ and copy its K function from the tables. If the LHA is less than $180^{\circ}$ use it in K table directly. Bring down the greater of the AP latitude and declination of the celestial object and write the lesser of the two below it. Ignoring their signs, enter the tables and copy their $\log$ Dec.functions below the K previously recorded. Add all three values together.

Find the difference between latitude of the AP and declination taking due care of the relative signs but ignoring any negative sign in the result. Record its K value from the tables to the left of the sum of three values calculated above. Copy the lesser of these under the greater and subtract it. Use the remainder to enter the Gaussians table. Copy the Gaussian under the other (lesser) value and subtract it from the logarithm above. This is the K of the object's Zenithal Distance (ZD). Subtract the ZD from $90^{\circ}\left(89^{\circ} 60^{\prime}\right)$ to give the altitude, H .

To avoid confusion strike through the number used to look up the Gaussians as soon as it is no longer needed.


## Azimuth

Subtract the object's declination from $90^{\circ}\left(89^{\circ} 60^{\prime}\right)$ to obtain its co-declination. Bring down the greater the altitude and AP latitude and write the lesser of the two below. Ignoring signs find their $\log$ Dec. find their $\log$ Dec. functions and add them together.

Find the difference between altitude and AP latitude taking due care of the relative signs but discard any negative sign in the result. Label this ( $\mathrm{H} \sim \mathrm{L}$ ).

Bring down the greater the co-declination and ( $\mathrm{H} \sim \mathrm{L}$ ) and write the lesser of the two below. Form the sum and difference of the two numbers. Ignoring any negative signs in the results look up the K functions of the two resulting angles and add the functions together. Take half of the sum. Bring down the sum of $\log$ Dec's previously calculated and subtract it. Discard any negative sign. This is $K$ of the azimuthal angle, A. If the LHA is greater than $180^{\circ}$ then A is the required true azimuth, otherwise subtract it from $360^{\circ}$.


## Formulas

For Line of Position (LOP) sight reduction the relevant formulas are
$\operatorname{hav} \hat{h}=\operatorname{hav}(L-\delta)+\cos L \cos \delta \operatorname{hav}($ LHA $)$
and
$\operatorname{hav} A=\frac{\sqrt{\operatorname{hav}(\hat{\delta}-(h-L)) \operatorname{hav}(\hat{\delta}+(h-L))}}{\cos h \cos L}$
where
$A$ is the azimuthal angle
$\delta$ is the celestial object's declination and $\hat{\delta}=90^{\circ}-\delta$ is its codeclination
$h$ is the celestial object's altitude and and $\hat{h}=90^{\circ}-h$ is its coaltitude
$L$ is the observer's assumed latitude and LHA is the local hour angle
The haversine function is defined by
$\operatorname{hav} \theta=\frac{1}{2}(1-\cos \theta)=\sin ^{2} \frac{\theta}{2}$
For an angle $\theta$ the K and $\log$ Dec. functions in the Stark Tables are
$\mathrm{K}=\log _{10} \frac{1}{\operatorname{hav} \theta} ; \quad \log$ Dec. $=\log _{10} \frac{1}{\cos \theta}$.
The Gaussian logarithm table lists values of
$\operatorname{Glog}_{10} x=\log _{10}\left(1+10^{-x}\right)$
which has the property that
$\log _{10} \frac{1}{y}-\operatorname{Glog}_{10}\left(\log _{10} \frac{1}{x}-\log _{10} \frac{1}{y}\right)=\log _{10} \frac{1}{x+y}$
and is used in the evaluation of formula (1).
Both formulas (1) and (2) follow from the application of the haversine distance formula to the standard navigational triangle. Formula (2) is obtained by means of the additional relation
$\operatorname{hav} A-\operatorname{hav} B=\sqrt{\operatorname{hav}(A+B) \operatorname{hav}(A-B)}$

