June 17, 1896 noon sight

Sun's declination at Greenwich mean noon June 17 is given in the 1896 American Ephemerides as N $23^{\circ} 24^{\prime} 50.2^{\prime \prime}$, increasing $3.55^{\prime \prime}$ per hour. Local noon at $138^{\circ} 35^{\prime} \mathrm{W}$ longitude makes GMT some $9.2^{\text {h }}$ (astronomical time) giving an increment of $33^{\prime \prime}$ in declination, let's say $23^{\circ} 25^{\prime}$. Semidiameter of the sun 16^{\prime} to the nearest minute of arc.

$\mathrm{h}_{\text {i }}$	$55^{\circ} 19^{\prime}$	
i	- 2	
Θ	- 3	(guessed dip value)
ha_{a}	5514	
r	- 1	
sd	$+\quad 16$ +55	(LL assumed)
H	5529	
δ	$\underline{2325} \mathrm{~N}$	
	8960	
$\mathrm{H}+\delta$	7854	
φ	116 S	(by DR $11^{\circ} 0^{\prime}$)

June 17, 1896 pm time sight

The Ephemerides gives Equation of Time 45.61^{s} at Gwch mean noon, increasing 0.54^{s} per hour. GMT at this time must be around $12^{\text {h }}$, making EoT $52^{\text {s }}$, to be "Subtracted from Mean Time", i.e. added to apparent time. The declination have increased to $23^{\circ} 26^{\prime}$ but in order to keep the sum (called 2 s below) even to avoid interpolation in the log tables we stick to $23^{\circ} 25^{\prime}$. It affects the result by a few seconds of time but compared with the uncertainty in the GMT obtained by the lunar the error is insignificant.

$\mathrm{h}_{\text {i }}$	$38^{\circ} 39^{\prime}$		
i	- 2		
Θ	- 3		
ha_{a}	3834		
r	- 1		
sd	+ $+\quad 16$	(LL assumed)	
h	3849		
φ	116	$\log \mathrm{sec}$	0.00820
p	11325	log csc	0.03733
2s	16280		
s	8140	$\log \cos$	9.16116
h	3849		
s-h	4251	$\log \sin$	9.83256
			19.03925
½LAT	$1^{\mathrm{h}} 17^{\mathrm{m}} 17^{\text {s }}$	$\log \sin$	9.51963
LAT	23434 pm		
EoT	52		
LMT	23526 pm	$\left(17^{\text {th }}\right.$)	
GMT	115048	(astro $17^{\text {th }}$)	
longitude	$9^{\mathrm{h}} 15^{\mathrm{m}} 22^{\mathrm{s}} \mathrm{W}$		
	$138^{\circ} 51^{\prime}$	(by DR 138 ${ }^{\circ} 46^{\prime}$)	

If a table of $\log \sin ^{2}(x / 2)$ with time argument is available the sum of logs (19.03925) can be used to find LAT directly. Then the possible error introduced when halving the \log and doubling the time is eliminated.

