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PREFACE

From a practical standpoint spherical trigonometry is

useful to engineers and geologists, who have to deal with

surveying, geodesy, and astronomy; to physicists, chemists,

mineralogists, and metallurgists, in their common study of

crystallography; to Navy and Aviation officers, in the solu-

tion of navigation problems. For some reason, however,

spherical trigonometry is not recognized as a regular subject
in many American college curricula. As a consequence, the

teacher of a science for which a working knowledge of spher-
ical triangles is desirable usually finds he has to impart it

to the students himself, or to use ready-made formulae that

his listeners have never seen, let alone derived, before.

This book has been written in an attempt to meet this

situation. It can be covered in about ten to twelve lectures

and could well serve as a text in a one-unit course for a

quarter or a semester. It aims at giving the strict minimum,
as briefly as possible. The straightforward and time-saving
Cesaro method seems particularly suitable for this purpose,

tying together as it does, from the outset, the concepts of

spherical and plane trigonometry. This method has with-

stood the test of experience. For years Belgian students

have thrived on it. Personally I have taught it for eight

years to crystallography students at the Johns Hopkins
University, and for two years to freshmen classes at Laval

University, with gratifying results.

The order in which the subject matter is arranged may
appear unorthodox. It has proved satisfactory, however,
from the teaching point of view. Through the use of the

stereographic projection (Ch. I), the concept of spherical

excess somewhat of a stumbling block is mastered from

vii



viii PREFACE

the start. A working knowledge of Cesaro's key-triangles is

acquired, as soon as they are established (Ch. II), through
the derivation of Napier's and Delambre's formulae and

several expressions of the spherical excess (Ch. III). This

much insures the understanding of the method. The treat-

ment of the oblique-angled triangle (Ch. IV) is thereby so

simplified that one can dispense with that of the right-angled

triangle. The latter properly follows as a particular case

(Ch. V). Examples of computations are given (Ch. VI),

both with logarithms and with the calculating machine.

They are followed by a selection of problems, completely
worked out (Ch. VII), and a number of exercises with answers

(Ch. VIII). Cross-references are made in the theoretical

chapters to appropriate applications. Proofs believed to be

new are marked by asterisks.

In conclusion may I be permitted to say that this booklet

was planned jointly by Cesaro and myself, several years ago.

He who was to have been the senior author passed away

shortly afterwards. In introducing Cesaro's elegant method

to the English-speaking public, I would like to think that

my writing will reflect his influence and, to some degree at

least, his reverence for simplicity and rigor.

J. D. H. D.

Hercules Powder Company Experiment Station

Wilmington, Delaware
April 1945
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INTRODUCTION

1. Purpose of Spherical Trigonometry. Spherical trigonome-

try is essentially concerned with the study of angular rela-

tionships that exist, in space, between planes and straight

lines intersecting in a common point O. A bundle of planes

passed through intersect one another in a sheaf of straight

lines. Two kinds of angles need therefore be considered:

angles between lines l and angles between planes (dihedral

angles).

The spatial angular relationships are more easily visualized

on a sphere drawn around O with an arbitrary radius. Any
line through is a diameter, and any plane through a

diametral plane, of such a sphere. The former punctures the

sphere in two diametrically opposite points, the latter inter-

sects it along a great circle. The angle between two lines is

measured on the sphere by an arc of the great circle whose

plane is that of the two given lines. The angle between two

planes is represented by the angle between the two great

circles along which the given planes intersect the sphere.

Indeed, by definition, the angle between the great circles is

equal to the angle between the tangents to the circles at their

point of intersection, but these tangents are both perpen-
dicular to the line of intersection of the two given planes,

hence the angle between the tangents is the true dihedral

angle.

An open pyramid, that is to say a pyramid without base,

whose apex is made the center of a sphere determines a

spherical polygon on the sphere. The vertices of the polygon
are the points where the edges of the pyramid puncture the

1 From now on, the word line will be used to designate a straight

line, unless otherwise stated.
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sphere; the sides of the polygon are arcs of the great circles

along which the faces of the pyramid intersect the sphere.

The angles of the polygon are equal to the dihedral angles

between adjacent faces of the pyramid. The sides of the

polygon are arcs that measure the angles of the faces at the

apex of the pyramid, that is to say, angles between adjacent

edges.

A trihedron is an open pyramid with three faces. The
three axes of co-ordinates in solid analytical geometry, for

instance, are the edges of a trihedron, while the three axial

planes are its faces. Consider a trihedron with its apex at

the center of the sphere. It determines a spherical triangle

on the sphere.
2 In the general case of an oblique trihedron,

an oblique-angled spherical triangle is obtained, that is to

say, one in which neither any angle nor any side is equal to

90. The main object of spherical trigonometry is to investi-

gate the relations between the six parts of the spherical tri-

angle, namely its three sides and its three angles.

2. The Spherical Triangle. The sides of a spherical triangle

are arcs of great circles. They can be expressed in angular

units, radians or degrees, since all great circles have the same

radius, equal to that of the sphere. As a consequence of the

conventional construction by means of which the spherical

triangle has been defined (Sn. 1), any side must be smaller

than a semi-circle and, likewise, any angle must be less

than 180.

By considering the trihedron whose apex is at the center of

the sphere, we see that the sum of any two sides of a spherical

triangle is greater than the third side, that any side is greater

than the difference between the other two sides, and that the

sum of all three sides (called the perimeter) is less than 360.
Because any angle of a spherical triangle is less than 180,

the sum of all three angles is obviously less than 540. It is

greater than 180, as we shall see later (Ch. II, Sn. 1).

This is the "Eulerian" spherical triangle, the only one to be
considered in this book.
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3. Comparison between Plane and Spherical Trigonometry.
In plane trigonometry, you draw triangles in a plane. Their

sides are segments of straight lines. The shortest path from

one point to another is the straight line that connects them.

The distance between two points is measured, along the

straight line, in units of length. The sum of the angles of a

plane triangle is 180. Through any point in the plane, a

straight line can be drawn parallel to a given line in the plane

(Euclidian geometry).
In spherical trigonometry, triangles are drawn on a sphere.

Their sides are arcs of great circles. The shortest path (on

the sphere) from one point to another is the great circle that

connects them. The (spherical, or angular) distance between

two points is measured, along the great circle, in units of

angle. The sum of the angles of a spherical triangle is greater

than 180. Through a point on the sphere, no great circle

can be drawn parallel to a given great circle on the sphere

(spherical geometry is non-Euclidian).

4. Fields of Usefulness of Spherical Trigonometry. Most

problems dealing with solid angles can be reduced to questions

of spherical trigonometry. Such problems crop up in the

study of geometrical polyhedra. Problems of solid analytical

geometry in which planes and lines pass through the origin

usually have trigonometric solutions.

Problems involving spatial directions around one point are

encountered in crystallography. Well formed crystals are

bounded by plane faces. From a point taken anywhere
inside the crystal, drop a perpendicular on each face; this

face normal defines the direction of the face. Relationships

between the inclinations of the faces relative to one another

appear in the network of spherical triangles which the sheaf

of face normals determines on a sphere drawn around 0.

Surveying is concerned with such small regions of the earth

surface that they can be considered plane in a first approxima-
tion. Geodesy deals with larger regions, for which the curva-
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ture of the earth must be taken into account. In a second

approximation the earth is taken as spherical, and the for-

mulae of spherical trigonometry are applicable. (Further re-

finements introduce corrections for the lack of perfect sphe-

ricity of the "geoid.")

In astronomy the application of spherical trigonometry is

obvious. The observer occupies a point that is very nearly

the center of the celestial sphere around the earth. Each

line of sight is a radius of the sphere. To the observer who is

not aware of, or concerned with, the distances from the earth

to the heavenly bodies, the latter appear to move on a sphere.

The angle subtended by two stars, as seen by the observer,

will thus become a side in a spherical triangle. Navigation

techniques, either on the high seas or in the air, being based

on astronomical observations, likewise depend on the solution

of spherical triangles.



CHAPTER I

THE STEREOGRAPHIC PROJECTION

1. Definition. The problem of representing a sphere on a

plane is essentially that of map projections. Of the many
types of projections that have been devised, one of the most
ancient is the stereographic.

In geographical parlance, used for convenience, the pro-

jection plane is the plane of the equator, and the projection

point, the South Pole. Points in the Northern Hemisphere
are projected inside the equatorial circle; points in the South-

ern Hemisphere, outside the equatorial circle; any point on

the equator is itself its own stereographic projection (Fig. 1).

The North Pole is projected in the center of the projection;

the South Pole, at infinity.

FIG. 1. The stereographic projection.

2. First Property of the Stereographic Projection. Circles

are projected as circles or straight lines. If the circle to be

projected passes through S, its projection is a straight line.

This is obvious, since the projection of the circle is the inter-

7



8 I. THE STEREOGRAPHIC PROJECTION

section of two planes: the plane of the circle and the plane of

the equator. Note that if the given circle is a great circle

passing through S (hence, a meridian) its projection is a

diameter of the equator.
'

If the circle to be projected does not pass through S, its

projection is a circle. The proof
1 of this is based on the

following theorem.

Consider (Fig. 2) an oblique cone with vertex S and circular

base AB. Let the plane of the drawing be a section through
S and a diameter AB of the base. The circular base is pro-

jected on the drawing as a straight line AB. A section ab,

perpendicular to the plane of the drawing, and such that the

angles SAB, S6a are equal, is called sub-contrary (or anti-

parallel) to the base.

Theorem: In an oblique cone having a circular base, any
section sub-contrary to the base is circular.

FIG. 2. Sub-contrary sections.

Take a section cd parallel to the base and, hence, obviously

circular. The two sections ab and cd intersect along a com-

mon chord, projected at a point n, which bisects the chord.

Let x be the length of the semi-chord. The triangles can and

bdn are similar (angles equal each to each), hence an : nd

1 This proof can be omitted in a first reading.
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= cn : nb, or an.nb = cn.nd. Because cd is circular, cn.nd
= x2

. Hence an . nb = x2
,
and ab is also circular.2

Now consider a section of the sphere of projection cut

perpendicular to the intersection of the equatorial plane EE'
and the plane of the circle AB to be projected (Fig. 3).

The angles SAB, S6a (marked on the drawing) are equal,

since the measure of SAB = KSE' + BE 7

) and that of

S6a = |(SE + BE') are equal (because SE = SE' = 90).
The sections ab and AB of the cone of projection are therefore

sub-contrary. Since AB is circular, so is ab.

S

FIG. 3. Projected circle, a circle.

Remark. The center of the projected circle is the projec-

tion of the vertex of the right cone tangent to the sphere along

the given circle. Let C be the vertex of the right cone tangent
to the sphere along the given circle AB (Fig. 4). Join CS,

intersecting the equator in c and the sphere in D. The

angles marked a are equal as having the same measure (one

half arc AD). Likewise for the angles marked 0, 7, d. The

Law of Sines, applied to the triangles Sac and Sc6, gives:

ac : Sc = sin a : sin 0, cb : Sc = sin 7 : sin 5.

2 This reasoning rests on the theorem, "If, from any point in the

circumference, a perpendicular is dropped on a diameter of a circle,

the perpendicular is the mean proportional of the segments deter-

mined on the diameter," and its converse.
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Applied to the triangles ACD and BCD, the same law gives:

sin a : sin ft
= CD : CA, sin 7 : sin 5 = CD : CB.

Since CA = CB (tangents drawn to the sphere from the same

point), these ratios of sines are equal. Whence ac =
c6, and

c is the center of the projected circle.3

FIG. 4. Center of projected circle.

Note that if the given circle is a great circle (but not a

meridian, nor the equator itself) its projection will be a circle

having a radius larger than that of the equator and cutting

the equator at the ends of a diameter. A great circle cuts the

equator at the ends of a diameter of the latter; points on the

equator are themselves their own stereographic projections.

3. Second Property of the Stereographic Projection. The

angle between two circles is projected in true magnitude.* The

8 The proof holds good if the given circle is a great circle; the right
cone with circular base becomes a right cylinder with circular base.

Make the construction.
4 A more general property of the stereographic projection is that

the angle between any two curves on the sphere is projected in true

magnitude. The property proved in the text, however, is sufficient

for our purpose. This proof can be omitted in a first reading.
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angle between two circles drawn on a sphere is equal to the

angle between their tangents. We shall prove: (1) that the

angle between the projected tangents is equal to the angle
between the tangents; (2) that the projected tangents are

tangent to the projected circles. Thus will be established

the property that the angle between the projected circles is

equal to the angle between the circles.

Fia. 5. Angle between projected tangents equal to

angle between tangents.

(1) Consider (Fig. 5) the point P in which two given circles

intersect. Let PT and PT' be the tangents to these circles;

they cut the plane of the equator in <, t' and the plane tangent

to the sphere at S in T, T'. Join PS, intersecting the plane

of the equator in p y
the stereographic pole of P. The pro.

jected tangents are pi, pt
f

. Join ST and ST'.

The triangles TPT' and TST' are similar (TT common;
TP = TS and TT = T'S, as tangents drawn to the sphere

from the same point). Hence, angle TPT' = angle TST'.

Again, the triangles tpt' and TST' are similar (all sides parallel

each to each; two parallel planes being intersected by any
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third plane along parallel lines). Hence, angle tpt'
= angle

TST'. It follows that the angle between the tangents (TPT')
and the angle between the projected tangents (tpt') are equal.

s

FIG. 6. Projected tangent, tangent to projected circle.

*(2) Consider (Fig. 6) a right cone tangent to the sphere

along the given circle PBC; let A be the vertex of this cone.

We know that the circle PBC is projected as a circle pbc.

We have seen that the projection of the vertex A is the center

a of the projected circle. A generatrix AP of the right cone

is projected as a radius ap of the projected circle. Pt, the

tangent to the given circle at P, is projected in pt (t in the

plane of the equator). But the angle apt, being the angle

between the projections of the tangents PA and Pt, is equal
to the angle between the tangents themselves, that is to say
90. Hence, pt is tangent to the projected circle.

* Proofs believed to be new are marked by asterisks.



CHAPTER II

CESARO'S KEY-TRIANGLES1

1. Ces&ro's "Triangle of Elements." Consider a spherical

triangle ABC. Without loss of generality, we may suppose
that one of its vertices A is located at the North pole of the

sphere. Project this triangle stereographically. The pro-

jected triangle A'B'C' (Fig. 7) will have a vertex A' at the

FIG. 7. Stereographic projection.

center of the projection, and two of its sides, A'B' and A'C',

being projected meridians, will be straight lines; its third side

B'C' will be an arc of a circle.

At B' and C' draw the tangents to the circle B'C', meeting
in T. Because the stereographic projection is angle-true,

C'A'B' = A, A'B'T = B, A'C'T = C.

1
Ces&ro, G. Nouvelle mthode pour l^tablissement des formules

de la trigonometric sphe*rique. Bull. Acad. roy. de Belgique (Cl. des

Sc.), 1905, 434.
Les formules de la trigonometric sphe"rique de"duites de la

projection stereographique du triangle. Emploi de cette projection
dans les recherches sur la sphere. Bull. Acad. roy. de Belgique (Cl.

des Sc.), 1905, 560.

13
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Designate by 2E the external angle between the tangents

meeting in T. It is easy to see that

A + B + C - 180 2E.

The angle 2E is called the spherical excess of the spherical

triangle ABC. It is equal to the excess over 180 of the sum
of the angles of the spherical triangle. We shall express it

in degrees.

The angles of the plane triangle A'B'C' are expressed as

follows, in terms of the angles of the spherical triangle ABC
and its spherical excess 2E,

A' = A, B' = B -
E, C' = C - E.

The sides of A'B'C' are functions of the sides of the spher-

ical triangle ABC (Fig. 8). Taking the radius of the sphere

FIG. 8. Perspective drawing of the

sphere of projection .

as the unit of length, we have

c' = tan -
,

b' = tan -
.
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Each of the quadrilaterals ABB'A' and ACC'A' has two

opposite angles equal to 90 (one at A', by construction; the

opposite one, as being inscribed in a semi-circle) and is,

therefore, inscribable in a circle. Hence

SB. SB' = SA.SA' = SC.SC'

and BCC'B' are also concyclic. It follows that the angles

.In I

Fio. 9. Triangle of elements relative to the angle A.

marked /3 (and the angles marked 7) are equal, so that the

triangles SBC and SC'B' are similar.

We may write, therefore,

B'C' : BC = SC' : SB,
or 2

b
, sec H

a 2

2 sin jr 2 cos

whence

a=
c

cos cos

8 For those who prefer step-by-step derivations: B'C' a', by
definition. BC = 2 sin Ja, for the chord BC subtends an arc a and
the chord is equal to twice the sine of half the angle. SC', in the

right-angled triangle SC'A', where SA' 1, is the secant of the angle
A ?

SC'. Finally, in the triangle SAB, where the angle at B is a right

angle, SB - SA cos ASB - 2 cos Jc.
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The triangle obtained by multiplying the three sides of

A'B'C' by
b c

cos cos
^

is Cesaro's triangle of elements relative to the angle A (Fig. 9).

Other "triangles of elements/* relative to the angles B
and C, can be obtained by cyclic permutations.

2. Ces&ro's "Derived Triangle." A lune is the spherical sur-

face bounded by two great semi-circles; for instance (Fig. 8),

FIG. 10. The two complementary trihedra, each showing its

six parts and spherical excess.

the area ABSCA between two meridians, ABS and ACS.
Two trihedra are called complementary when the two spherical

triangles they determine on the sphere form a lune. For in-

stance (Fig. 8), the trihedra A'ABC and A'SBC are comple-

mentary. They have two edges, A'B and A'C, in common
and the third edge, A'S, of one is the prolongation of the

third edge, AA', of the other; the vertices A and S lie at the

ends of a diameter, and the two spherical triangles ABC and

SBC are seen to form a lune.

Designating by O the center of the sphere, consider a

trihedron OABC, represented (Fig. 10) by its spherical tri-

angle ABC. Produce the great circles BA and BC till they

meet, in D, thus forming a lune. The spherical triangle ADC
represents the complementary trihedron OADC. The parts of
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the triangle ADC are easily expressed in terms of those of

the triangle ABC. One side, 6, is common; the angle at D
is equal to B; the other parts are the supplements of corre-

sponding parts of the triangle ABC (Fig. 10). The spherical

excess is found to be (180 - A) + (180 - C) + B - 180

= 180 - (A + B + C) + 2B = 2B - 2E = 2(B -
E).

cos 2 cos I

FIG. 11. Derived triangle relative to the angle A.

Let us compose the triangle of elements, relative to the

angle (180 A), of the complementary trihedron OADC.
Its six parts are tabulated below, together with those of the

triangle of elements, relative to A, of the primitive trihedron

OABC.

THE SIX PARTS OF THE TRIANGLE OF ELEMENTS

For trihedron OABC For trihedron OADC
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The expression of the third angle is transformed as follows:

180 -C-B+E=A+ 180 -(A + B + C) + E = A
2E + E = A E. The other parts are easily simplified.

The new key-triangle can now be drawn (Fig. 11); it is

Cesaro's derived triangle relative to the angle A. The derived

triangle of a trihedron is the triangle of elements of the

complementary trihedron.

Other "derived triangles/' relative to the angles B and C,
can be obtained by cyclic permutations.

3. Polar Triangles. Consider a spherical triangle ABC and

the corresponding trihedron OABC. Erect OA*, OB*, OC*,

perpendicular to the faces of the trihedron, OBC, OCA, OAB,
and on the same sides of these faces as OA, OB, OC, respec-

tively. The new trihedron OA*B*C* determines, on the

sphere (Fig. 12), a triangle A*B*C*. The vertices, A*, B*,

C*, are called the poles of the planes OBC, OCA, OAB,
respectively.

C*

FIG. 12. Polar triangles.

The triangle A*B*C* is said to be the polar triangle of ABC.
It follows from the construction that ABC is the polar triangle

of A*B*C*. Likewise, it follows that the angles of one tri-

angle are the supplements of the sides of the other, and that

the sides of one are the supplements of the angles of the other.
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Hence the perimeter 2p* of A*B*C* is equal to 360 -
2E,

and its spherical excess 2E* is equal to 360 2p, where 2E
and 2p refer to the triangle ABC. In other words half the

spherical excess of one triangle is the supplement of half the

perimeter of the other.

Both the triangle of elements and the derived triangle of the

polar triangle A*B*C* are thus easily established (Figs. 13

FIG. 13. Triangle of elements of the polar triangle (relative to a).

FIG. 14. Derived triangle of the polar triangle (relative to a).

and 14). Their sides and angles are functions of the parts of

the triangle ABC, in particular of its semi-perimeter p.

Analogous key-triangles, relative to b and c, can be obtained

by cyclic permutations.

Remark. It is easy to remember how to transform the

key-triangles of the primitive triangle into those of the polar

triangle. Instead of a function of a half-side, write the
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a A
co-function of the half-angle; thus sin ^ becomes cos ^ ,

Z 1

sin x cos jr becomes cos ^ sin -^ ,
etc. Instead of an angle,

z & &

write the supplement of the side; thus A becomes (180 a),

and (180 A) becomes a. Instead of half the spherical ex-

cess, E, write the supplement of half the perimeter (180 p).

Instead of an angle minus half the spherical excess, write half

the perimeter minus the side; thus (A E) becomes (p a)

etc. The latter transformation is immediately apparent,

since A* - E* = (180
-

a)
-

(180
-

p).

4. Derivation of the Formulae of Spherical Trigonometry.
All the formulae of spherical trigonometry are derived from

the key-triangles (which have been obtained without any
restrictive hypothesis on the spherical triangle, and are there-

fore perfectly general) by applying to them the known formu-

lae of plane trigonometry. Each formula of spherical trigo-

nometry can thus be derived independently of the others.

FIG. 15. A plane triangle.

A' + B' + C' = 180

a' + b' + c' = 2p'

The parts of a plane triangle (Fig. 15) will be designated

by primed letters: A', B', C', the angles; a', 6', c', the opposite
sidesf 2p' = a' + V + c', the perimeter.

The parts of a spherical triangle (Fig. 16) will be desig-

nated by unprimed letters: A, B, C, the angles; a, 6, c, the
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FIG. 16. A spherical triangle.

A + B + C - 180 = 2E
a + b + c = 2p

sides; 2p = a + b + c, the perimeter; 2E = A + B + C
180, the spherical excess.

EXERCISES

1. Derive the triangle of elements relative to the angle B from

that relative to the angle A (Fig. 9) by cyclic permutations.
2. Same question for the triangle of elements relative to C.

3. Draw the derived triangles relative to the angles B and C.

4. Derive, for the polar triangle, the triangle of elements and the

derived triangle: (i) relative to the side b, (ii) relative to the side c.

5. Show that the area of the triangle of elements and that of the

derived triangle are both equal to A/8, where

A =* 2Vsin p sin(p a) sin(p b) sin(p c).

(A, called the sine of the trihedral angle, is a useful function of the

face angles of the trihedron, which are the sides of the spherical

triangle.)



CHAPTER III

HOW THE KEY-TRIANGLES ARE PUT TO WORK

1. Napier's Analogies.
1

Napier's analogies are relations be-

tween five parts of a spherical triangle.

(1)

(2)

These formulae are read directly from the key-triangles,

by applying the Law of Tangents: In a plane triangle, the

tangent of the half-difference of two angles is to the tangent
of their half-sum (or to the cotangent of half the third angle)

as the difference of the opposite sides is to their sum.

The triangle of elements (Fig. 9) yields the first analogy.

Note that the half-sum of two angles is B C. We have

.

tan
B C . b c . c b . b - c

sin ^ cos ^ sin - cos ~ sm -^

.A
cot

.6 c
,

. c b
sin

^
cos

^ -f sm
^
cos ~ sm

b + c'

The derived triangle (Fig. 11) gives the second analogy. The
last two are obtained from the key-triangles (Figs. 1$ and 14)

of the polar triangle.

2. Delambre's Formulae. 2 Delambre's formulae are rela-

tions between all six parts of a spherical triangle.

1
Analogies is an archaic term for

proportions.
1
Improperly attributed to Gauss by certain authors.
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co8j(B-C) ^ sin j(b+c)
sin JA sin Ja

'

cos J(B+ C) ^ cos j(b-f c)

sin JA cos Ja
'

(3)

(4)

The Law of Sines of plane trigonometry, applied to the

triangle of elements (Fig. 9), gives

sm -

. 6 c
sin -cos

. c b
am cos

sin A sin (B - E) sin (C - E)
'

which, by the theory of proportions, becomes

. b + c
Sm :r sm

b - c. a
sm o2 _ z z

sin A
~

sin(B-E) + sin(C-E)
~

sin(B-E) - sin(C-E)
or

a .b + c .... 6 c
sm

2
sm sm

.A A A B-C
2 Sm TT COS TT 2 COS 77 COS S

. A . B - C'
2 sm " sm

and Delambre's first two formulae follow immediately.

The same method, applied to the derived triangle (Fig. 11),

yields the last two formulae.

3. Euler's Formula. Euler's formula expresses E, one-half

of the spherical excess,
3 in terms of the sides.

cos E = cos a -f cos b + cos c

. a b c
4 cos cos ~ cos ~

(5a)

3 The value E of one-half the spherical excess is useful in calculating
the area of a triangle. It is known from geometry (see Appendix 1)

that the area of a spherical triangle is to the area of the sphere as E
(expressed in degrees) is to 360.



24 III. KEY-TRIANGLES PUT TO WORK

This formula is obtained from the derived triangle (Fig. 11),

by applying the Law of Cosines of plane trigonometry

a'2 = /2 + c
>2 _ ^Vc' cos A'.

We have

. 6 . n c n d ,
6 c rt a b c r.sm2 sin2 - = cos2 ~ + cos2 ~ cos2 ~ 2 cos cos ~ cos ~ cos E,

Z Z t & & & & &

n a b c ^ 9 a2 cos cos ~ cos ~ cos E = cos2 ~
JL u

,/ 6 c . . 6 . c \/ 6 c . b . c\+ ( cos
^
cos

g
+ sm - sm -

1 ( cos
^
cos

^
- sm

3
sm

2 /
'

A a b c -n o 9 a .o & C 6 + C
4 cos H cos jc cos cos E = 2 cos2 + 2 cos cos ^ ,

& & A & A

from which Euler's formula follows immediately.

4. Lhuilier's Formula. Lhuilier's formula gives the fourth of

the spherical excess in terms of the sides (and the semi-

perimeter p).

x oE , p . p a , p b , p c
tan2 ^ = tan ^ tan ^r tan ^

^ tan *-=
L t & fj t

(5b)

It can be obtained directly from the derived triangle

(Fig. 11) by expressing the tangent of half the angle E in

terms of the sides. The plane trigonometry formula is

-
p'(p'

-
a')

We have

o f OL/ 6 c a
2p 26 = cos ~-- cos ~

,

/u t

r /
6 c

,
a

2p' = cos-- + cos
,
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and

r I r /
a b + C

2p 2c = cos K cos ^ .

Since

2p' 2a' = cos ^ + cos ^ ,

cos P - cos Q , P + Q , Q - P- -- = tan 1r^- tan -*- --
1r- -=

,

cos P + cos Q 2 2
*

we are led to

, E . a + b c L a b + c
tan2

75-
= tan--- tan---

. . . a + b 4- c , b + c a
X tan--r- tan---

,

which is Lhuilier's formula, as 2p = a + b + c.

*5. Cagnoli's Formula. Cagnoli's formula gives the half of

the spherical excess in terms of the sides (and the semi-

perimeter p).

. ^ Vsm p sm(p a) sin(p 6) sm(p c)
sin Hi = r

a b c
2 COS jr COS COS 7

(5c)

The area T' of the derived triangle (Fig. 11) may be

expressed as the half-product of the base by the altitude,

T' = ? cos 5 cos ~ cos ~ sin E,
u i t

or, in terms of its sides and semi-perimeter,
4

= i Vsin p sin(p a) sin(p b) sin(p c).

4
Cp. Exercise 5, Chapter II and Section 4, this chapter.
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Equating the two expressions immediately gives the desired

formula.

*6. The Spherical Excess in Terms of Two Sides and Their

Included Angle. In a plane triangle, as a consequence of the

Law of Sines,

c' - V cos A'
cot B' =

b' sin A'

This formula, applied to the derived triangle (Fig. 11),

in which the angles (180 A), E, (A E) are taken as

A', B', C', respectively, yields the desired relation

, T-,
cot E

b c
,

. 6 . c .

cos x cos
JJT + sin ~ sin ^ cos A

. 6 . c . A
sin - sin jr sin A

fL

or

cot - cot ~ + cos A
cot E = 4^sin A

(6)

EXERCISES

1. Express cosp in terms of the angles, by applying Euler's

formula to the polar triangle.

2. Derive the expression of cos p in terms of the angles from the

derived triangle of the polar triangle (Fig. 14), in the same way as

Euler's formula has been derived (Sn. 3).

3. From Napier's second analogy (1), derive a formula to calculate

E in terms of two sides (6, c) and their included angle (A) .

4. Show that, in a right-angled triangle (C = 90),

tan E = tan - tan ^ .

Hint: use the formula derived in the preceding exercise.

E E
5. Find sin ^ and cos jr- in terms of the sides. Apply the s

method as that used in Sn. 4 for deriving Lhuilier's formula (6).
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6. Derive Lhuilier's formula (6) from the results obtained in the

preceding exercise.

7. Derive Cagnoli's formula from Lhuilier's formula.

8. Gua's formula gives cot E in terms of the sides. Find what it is.

9. You now know six formulae by means of which, given the sides,

the spherical excess can be calculated. Which one would you prefer

if you had to depend on logarithmic calculations? Which one would

be easiest to use if a calculating machine were available?

10. The sides of a spherical triangle are a = 3526', 6 = 4215',
c 1822'. Calculate the spherical excess by two different formulae.



CHAPTER IV

RELATIONS BETWEEN FOUR PARTS
OF A SPHERICAL TRIANGLE

1. Relation between the Three Sides and One Angle.
1 Ap-

plying the Law of Cosines of plane trigonometry

a'* = fc'2 + c'2 _ ^V c' cos A'

to the triangle of elements (Fig. 9), we get

a b c c b
sin2 = sin2 ^ cos2 ~ + sin2 ~ cos2 ~

. b c . c b .

2 sm cos H sin cos ~ cos A.

In view of

2 sin2 - = 1 cos x, 2 cos2 ~ = 1 + cos x\
t A

the above formula, multiplied by 4, may be written

2(1 cos a) = (1 cos b)(l + cos c)

+ (1 cos c)(l + cos b) 2 sin b sin c cos A,

whence the desired formula

'

(7)cos a cos b cos c + sin 6 sin c cos A.

This is expressed: The cosine of the side opposite the given

angle is equal to the product of the cosines of the other two

sides, plus the product of the sines of these two sides times

the cosine of the given angle.

i Used in Ex. 16, 21, 24, 26, 28 (Ch. VIII).
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2. Expression of the Half-Angles in Terms of the Three
Sides. 2 The following formulae of plane trigonometry

l

2

' -
V)(p'

-
c')

6V COS'
A' _ p'(p>

-
fl')

2 6V

p'(p>
-

a')

are applied to the triangle of elements (Fig. 9).

We have

n ,
. b + c . . a n . p p a

2p' = sm
^
--h sin - = 2 sm

|
cos^ ,

2p' 2a' = sin
.a n . p a p ,sm

^
= 2 sin - - cos ^

,
etc.

Hence, in the spherical triangle,

These formulae are easily remembered on account of their

similarity with the corresponding formulae of plane trigo-

nometry.

3. Relation between Two Sides and Their Opposite Angles.
3

Apply the Law of Sines of plane trigonometry to the derived

triangle relative to A (Fig. 11).

a . b . c
cos sm sm

sin A sinE

Used in Ex. 1, 18, 19, 20 (Ch. VIII).
3 Used in Ex. 18, 21, 25, 27 (Ch. VIII).
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Multiply both members by 2 sin -
,

i

. a . b . c
2 sin pr sm - sin s

sin a _ 222
sin A sin E

In like manner, from the derived triangle relative to B,

we get
n . a . b . c

. , 2 sin jr sin ^ sin ^
sin 6

__
222

sin B sin E *

which was to be expected from the symmetrical form of the

right-hand member of the above equations. Hence

sm a
__ sin b

sin A
~~

sin B
'

(9)

This is expressed: The sines of the sides are proportional

to the sines of the opposite angles.

4. Relation between the Three Angles and One Side.4 The
Law of Cosines of plane trigonometry is applied to the triangle

of elements of the polar triangle (Fig. 13). The method is

the same as for the first formula (Sn. 1).

cos A = cos B cos C + sin B sin C cos a. (10)

This formula is easily remembered on account of its simi-

larity with formula (7). Note the minus sign in the second

member, however.

5. Expression of the Half-Sides in Terms of the Three

Angles.
6 The method used in Sn. 2 could be applied to the

triangle of elements of the polar triangle (Fig. 13). Another

Used in Ex. 27 (Ch. VIII).
Used in Ex. 19 (Ch. VIII).



OBLIQUE-ANGLED TRIANGLES 31

method does not require the use of the polar triangle. Draw
the two key-triangles relative to B and those relative to C.

The Law of Sines of plane trigonometry, applied to the

triangle of elements relative to C, gives

sin(A - E)
sin C

. a b
sm cos

sn

the same law, applied to the derived triangle relative to B,

gives

sin E
sin B

. c . a
Sin

2
sm

2

b~
COS?:

Multiplying these two relations by each other yields immedi-

ately

,
a sin E sin(A E)

i
..

2 sin B sin C (lla)

Likewise, the Law of Sines, applied to the triangles of

elements relative to B and to C, yield two relations: one

between B, C E, and the opposite sides; the other, between

C, B E, and the opposite sides. These two relations,

multiplied by each other, give

cos
sin(B - E) sin(C - E)

sin B sin C (lib)

Finally, the Law of Sines may be applied to both key-

triangles relative to B, giving the relations

sin E
. c . a
sm sm

sin(B
- E) c a

'

cos cos ~

. a c
/ A T-\ sin r cos o

sm(A - E) 2 2

sin(C - E)
~

. c a '

v 7 sm H cos H
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which, multiplied by each other, lead to

2
a __ sin E sin(A E)
2
~

sin(B - E) sin(C - E)
' (He)

The last formula could, of course, be derived from the pre-

ceding two.

The formulae (11) can only be remembered after careful

comparison with the formulae (8). Note the deceiving simi-

larity between (8a) and (lib), etc.

6. Relation between Two Sides, their Included Angle, and

the Angle Opposite One of them (that is to say, between four

consecutive parts).
6

Napier's first two analogies, as read from

the key-triangles relative to C, give

. a - b

f
A-B Sin ~2~ .0

tan ___ = __n- cot _,
sin

tan
A + B

cos-

2

a b

C

cos

A relation between a, 6, C, A can be obtained from these two

equations by eliminating B, which is easily done as follows.

Since

A-B
,
A+BA -

A.

we may write

tan A
tan

2

A - B
+ tan

.

1 tan
A -

^tan

2
'

A + B
2 _ N

A + B
~
D'

Used in Ex. 2, 21, 27 (Ch. VIII).
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where

r . g-6
sin _

N =
cos

a - b}

sm cos
a + b

cot -

o2 sm a cos ~-
L _

sin(a + b) sin ^

sin a sin C
Q

sin(a + 6) sin2 =-

and

sin(a
-

b) CD = 1 --rf-r-TT COt2
-pr

sm(a + 6) 2

C C
sin(a + b) sin2 -^ sin(a 6) cos2

7^-
2i 2t= _

sin (a + 6) sin2 TT-
J

Substituting for N and D gives

tan A

__
sin a sin C

a cos 6 ( sin2 ~ cos2
o")

+sin6cosaf sin2 ^sn

whence

sin 6 cos a sin a cos 6 cos C = sin a sin C cot A,

or, on dividing by sin a and transposing,

cot a sin b = cos 6 cos C + sin C cot A. (12)
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This is known as the "cot-sin-cos" formula. (Note the

symmetry in the sequence of the trigonometric functions:

cot-sin-cos . . . cos-sin-cot.) It is expressed: The cotangent
of the side opposite one of the given angles times the sine of

the other side is equal to the cosine of the latter times the

cosine of the included angle, plus the sine of the latter times

the cotangent of the angle opposite the first side.

Remark. Formula (12) is sometimes written in another,

just as elegant, form:

cos b cos C = sin b cot a sin C cot A. (12a)

It is then expressed: The product of the cosines of the side

and the angle that are not opposite any given part is equal to

the difference of their sines, each multiplied by a cotangent,

respectively that of the given side and the given angle that

are opposite each other.

EXERCISES

1. Express cosp in terms of the angles, by using Delambre's

formulae and formula (7). Hint:

P = Ja 4- J(& + c).

2. Transform formula (lib) into formula (10). Hint: To elimi-

nate E multiply both members by 2 and change the product of two

sines in the numerator into a difference of two cosines.

3. Derive formula (10) by applying formula (7) to the polar

triangle.

4. Derive the three formulae (11) by means of the triangle of

elements of the polar triangle.

5. Derive formula (12) from Napier's last two analogies (2).

6. Write the formula giving cos c in terms of o, 6, C. Then replace

cose in tne formula (7) by the value just found and, using the

proportionality of the sines of sides and opposite angles, derive

formula (12).

7. Let 2S designate the sum of the angles of a spherical triangle.

What form will the three formulae (11) assume with this notation?
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8. From formulae (8a) and (8b), find an expression of sin A.

Show that it is equivalent to

1
sin A : Vl cos2 a cos2 6 cos2 c + 2 cos a cos 6 cos c.

sin 6 sin c

*9. The expression of sin A, in terms of the sides, found from

formulae (8a) and (8b) can also be obtained directly from the triangle

of elements (Fig. 9), by applying to it the method used for deriving

Cagnoli's formula (Ch. Ill, Sn. 5).



CHAPTER V

RIGHT-ANGLED TRIANGLES

1. The Right-Angled Triangle, a Special Case of the Oblique-

Angled Triangle. The formulae established in the preceding

chapter give relations between four parts of a triangle. Of

these parts, at least one is necessarily an angle. By letting

an angle equal 90, a formula derived for the general case of

an oblique-angled triangle is transformed into a relation be-

tween three parts (other than the right angle) of a right-angled

triangle. By convention l the triangle ABC is made right-

angled at C. It may be necessary to rearrange the general

formulae by permutation of letters, so that the angle which

is to become the right angle be labeled C. The side opposite

C will therefore be the hypotenuse c.

There are six different ways of choosing three parts from

the five parts (other than the right angle) of a right-angled

triangle. The hypotenuse may be taken, either with the

other two sides, or with the two angles other than the right

angle, or with one side and one angle. In the latter case, the

angle may be opposite the chosen side or adjacent to it. If

the hypotenuse is not chosen, there are only two possibilities :

two angles and one side, necessarily opposite one of the angles;

or two sides and one angle, necessarily opposite one of

the sides.

Right-angled triangles are always with us. The six rela-

tions about to be derived have therefore proved to be very
useful in practice. You will find it advantageous to commit
them to memory, preferably in the form of statements rather

than equations.

1 This convention is not universal. Many authors make A = 90.

36
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2. Relations between the Hypotenuse and Two Sides or

Two Angles.
2 The Product Formulae.

Formula (7) may be written

cos c = cos a cos 6 -f sin a sin b cos C.

It becomes,
8 for C = 90,

cos c = cos a cos b. (13)

Formula (10) may be written

cos C = cos A cos B + sin A sin B cos c.

It becomes 4

cos c = cot A cot B. (14)

This is expressed: The cosine of the hypotenuse is equal
to the product of the cosines of the two sides, or the product
of the cotangents of the two angles.

3. Relations between the Hypotenuse, One Side, and One

Angle. The Ratios of Sines and Tangents.

Formula (9) may be written

sin c sin a

sin C sin A "

It becomes,
5 for C = 90,

sin a = sin c sin A

J The terms sides and angles, when applied to a right-angled tri-

angle, are construed to mean sides other than the hypotenuse and
angles other than the right angle.

Formula (13) is used in Ex. 3, 7, 15, 17, 29 (Ch. VIII).
* Formula (14) is used in Ex. 9, 12, 26 (Ch. VIII).
5 Formula (15) is used in Ex. 4, 14, 23, 24, 29 (Ch. VIII).
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or

(15)

Formula (12) may be written

cot c sin a = cos a cos B + sin B cot C.

It becomes 6

cos B = cot c tan a
or

(16)

With respect to the side a, note that A is the opposite angle,

whereas B is the adjacent angle.

The relations are remembered as follows. In each case

consider the side and the hypotenuse; the ratio of their sines

is equal to the sine of the opposite angle, the ratio of their

tangents is equal to the cosine of the adjacent angle.

Remark. Compare the definitions of sine and cosine in a

plane right-angled triangle: sin A' = cos B' =
a'/c'.

4. Relations between Two Angles and One Side, or be-

tween Two Sides and One Angle. The Ratios of Cosines

and Cotangents.

Formula (10),

cos A = cos B cos C + sin B sin C cos a,

becomes,
7 on letting C = 90,

cos A = sin B cos a
or

(17)

Formula (16) is used in Ex. 4, 8, 20 (Ch. VIII).
7 Formula (17) is used in Ex. 13 (Ch. VIII).
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Formula (12),

cot a sin b = cos b cos C + sin C cot A,

becomes,
8 for C = 90,

cot a sin b = cot A
or

(18)

The relations are remembered as follows. In each case

consider an angle and its opposite side; the ratio of their

cosines is equal to the sine of the other angle, the ratio of

their cotangents is equal to the sine of the other side.

Remark. Notice that all but one of the four ratios con-

sidered in the last two sections give the sine of a part.

5. Napier's Rule. Although some people prefer to memorize

the preceding formulae as such, Napier's rule, which includes

all the possible relations between any three parts of a right-

angled triangle, may be found useful by others.

FIG. 17. Napier's rule.

In the triangle ABC, right-angled at C, ignore the right

angle; then, the hypotenuse, the other two angles, and the

8 Formula (18) is used in Ex. 7, 15, 17 (Ch. VIII).
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complements of the sides about the right angle are Napier's

five cyclic parts. The rule is expressed as follows.

The cosine of any of the five parts is equal to the product
of the sines of the opposite parts or the product of the

cotangents of the adjacent parts.

cos c = cos a cos b = cot A cot B,

cos A = sin B cos a = cot c tan b,

cos B = sin A cos b = cot c tan a,

sin a = sin c sin A = cot B tan &,

sin 6 = sin c sin B = cot A tan a.

This amazing rule is more than just a mnemonic trick.

It is a theorem, which was given with a separate proof
9

by Napier.

It is easy to check that the ten relations yielded by the

rule correspond, with some duplication, to the formulae (13)

to (18).

*
Napier's proof is outside the scope of this book.



CHAPTER VI

EXAMPLES OF CALCULATIONS

1. Solution of Triangles.
1

(i) Oblique-angled triangles.

Three parts being given, any fourth part may be calculated

by one of the formulae (7) to (12). To find an angle in terms

of the three sides, use one of the formulae (8), giving the half-

angle. Likewise, to find a side in terms of the three angles,

use one of the formulae (11), giving the half-side. In all

other cases, use one of the fundamental formulae (7), (9),

(10), (12).

(ii) Right-angled triangles.

Two parts being given, besides the right angle, any third

part may be calculated by one of the formulae (13) to (18).

Find the appropriate formula or use Napier's rule.

An isosceles triangle is divided into two right-angled tri-

angles by an arc drawn from the vertex at right angles to the

base; this arc bisects the base and the opposite angle. Isos-

celes triangles may also be solved like oblique-angled triangles

by means of the fundamental formulae; formulae (8) and (11)

should be avoided, as they would complicate the calculations.

(iii) Right-sided (or quadrantal) triangles.

The polar triangle of a right-sided triangle is right-angled;

Napier's rule may be used to solve the polar triangle, from

which the parts of the quadrantal triangle are then computed.

1 We have seen (Introduction, Sn. 2) that any angle or any side of

a spherical triangle is less than 180. It follows that a case of am-
biguity will present itself whenever a part is to be calculated by a
formula that gives its sine (two supplementary angles having
equal sines).

41
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Right-sided triangles are also easily solved by the funda-

mental formulae, which are greatly simplified when one of the

sides is equal to 90.

2. Formulae Adapted to Logarithmic Computation.

(i) FORMULA: cos a = cos b cos c + sin b sin c cos A.

The unknown may be either a, b (or c), or A. If the un-

known is a, factorize cos 6:

cos a = cos 6(cos c -f tan 6 sin c cos A).

Introduce an auxiliary angle u so as to arrive at the sine of

the sum of two angles.

Let
cot u = tan b cos A,

then
cos b

, . . . .

cos a = (sm u cos c + sm c cos u)

or

cos 6 sin(c + u)
cos a = r-^ ! -

.

sm u

If the unknown is c, the same method gives immediately

cos a sin u
sin(c -f w) =

cos b

If the unknown is A, use the formulae (8), which are

adapted to logarithmic computation.

(ii) FORMULA: cot a sin 6 = cos b cos C -f- sin C cot A.

If the unknown is a, we write

A j. r / ~
,

sin C cot A \
cot a = cot 61 cos C H r ) .

\ cos 6 /
Let

. cot A
cot v = r ,

cos 6
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then
cot b , . ~ . . ~ x

cot a =
.
-

(sin v cos C + sin C cos v)
sin t;

or
cot 6 sin(C + t;)-~- -

.

cot a =
sin v

If the unknown is C, the same method gives immediately

cot a sin t;

If the unknown is 6, we write

A / r ,cosC\ . ~ , A
cot al sin o cos b -

1
= sin C cot A.

\ cot a /

Let
cos C

tan w = 7 ,

cot a

then

COt d . 1 f \ SI ! A

(sin o cos w sin w cos 6) = sm G cot A
cos w

or

. ,, x sin C cot A cos w
sm(6 w) = T .

cot a

If the unknown is A, the same method gives immediately

, . cot a sin(6 w)
cot A =

: rr
-

.

sin C cos w

(iii) FORMULA: cos A = cos B cos C + sin B sin C cos a.

The method is the same as for the first formula (Sn. 2, i).

The results follow.

Let
cot x = tan B cos a.

If the unknown is A,

. cos B sin(C x)
cos A = r-^ .

sm x
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If the unknown is C,

. ,~ x cos A sin x
sm(C x) = 5 .

cos B

If the unknown is a, use the formulae (11), which are

adapted to logarithmic computation.

3. Numerical Calculations.

Computations are carried out either by means of logarithms

or with a calculating machine (in which case tables of natural

values of the trigonometric functions are necessary). In

either case, a neat calculation form is essential.

(i) By logarithms.

First write across the top of the page the formula to be

employed (adapted to logarithmic computation, if desired).

In this formula always designate the parts of the triangle by
letters (not by their actual values).

Then write the given parts near the left margin of the

sheet. Avoid writing the word log as much as possible, use

it only in front of those logarithms which may be needed

again in the course of the calculations. Write the minus

sign over a negative characteristic,
2 so as to avoid the cum-

1 Calculations with negative figures are quite straightforward, once

you become used to them. See for yourself:

1.67 2.67

2)3.34 2)3.34

2__ _
13 13
12 12

14 14
14 14

In the division on the left, you say: 2 in 3 goes 1, 1X2 =
2,

3 2 =
1, bring down 3, 2 in 13 etc. In the division on the

right, you say: 2 in 3 goes 2, 2X2 =
1, 3 1 = 1, bring down 3,

2 in 13 etc. The only difference is that, in the second case, you
take the first partial quotient by excess in order to get a positive
remainder.
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bersome addition and subtraction of 10. In most cases there

is no advantage in adding the cologarithm rather than sub-

tracting the logarithm itself; in a simple division, especially,

this amounts to making a subtraction and an addition instead

of one subtraction only.

Write the result near the left margin of the page.

A second formula may be used as a check. This can be

done in two ways: either the solution is carried out in dupli-

cate, by means of two formulae; or a relation between the

given parts and the result is verified afterwards. In the

course of long calculations (involving a whole chain of tri-

angles, for instance) it is well to check the results from time

to time, before proceeding.

(ii) With the calculating machine.

Write the formula across the page. Copy only those

natural values that may be used again in the course of the

calculations. Write the data and the result near the left

margin of the page.

4. First Example.

Given the three sides of a triangle, solve for one angle.

Use a check formula.

Again compare these two additions of logarithms :

9.412 5062 -10 1.412 5062
8.803 7253 -10 2.803 7253

18.216 2315 -20 2.216 2315

The last partial addition, in the example on the right, reads: 1

(carried over) and I make 0, and 2 make 2. Is this really difficult?
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(A) SOLUTION BY LOGARITHMS

. , A sin (p 6) sin (p c) , A sin p sin(p a)
Sin2

-pr :
-

: COS3
7j-

== -. j
: .

2 sin o sin c 2 sin o sm c

a = 5048'20"
b - 11644'50" (6315'10") T.950 8518
c - 12911'40" (5048'20") 1.889 3049

1.840 1567

2p = 29644'50"
171

p - 14822'25 //
(3137'35") T.719 6275

p - a - 9734' 5" (8225'55") 1. 996 1989
14

T. 715 8449
-T.840 1567 <-

A T.875 6882

log cos = 1.937 8441
2 8462

21
12 1

8 9

- 2955'41.7" i

Z

p - 6 - 3137'35" .. T.719 6446

p~c - 1910'45" .. T.516 5358
303

T.236 2107
-T.840 1567 <-

A T.396 0540

log sin ~ = 1.698 0270
2 0204

66
36 6
29 4

- 2955'41.8"
6

A - 5951'23.6" The answer to the closest second is 5951 /

24//
.

Suggestion To find the supplement of an angle, write down
the figures from left to right as you mentally increase the
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given angle to 17959'(50/10)". Example: given 14822'25".

Write 31 while saying 179, 37' while saying 59, 3 while

saying 50, and 5" while saying 10.

(B) SOLUTION BY NATURAL VALUES AND
CALCULATING MACHINE

. cos a cos 6 cos c
COS A =-

: r :

-
,

sin o sin c

cos sin

a= 5048'20" .......... 0.6319542 ..........
b 11644'50" .......... - 0.450 0551 .......... 0.893 0008
c = 12911'40" .......... - 0.631 9542 .......... 0.775 0058

cos A = 0.502 1668
1817

149
125 7

A 5951'23.6". 23 3

i e i A *
A sin(p 6) sin(p c)

Check formula: tan2 ^ = ~-r (
1 ~

; .

2 sin psm(p a)

2p = 29644'50"
p = 14822'25" (3137'35") .................... 0.524 3575

p - a = 9734' 5" (8225
/

55
//

) ... 0.991 2859, . . . 206_32 0.524 3781

0.991 2891

p - b = 3137'35" .............................. 0.524 3781

p - c 1910'45" .............. 0.328 5003_229

0.328 5232

tan8 = 0.331 4101

tan = 0.575 6824
2 6708

116
64 6

= 29 55'41.8" 51 4
L

A - 5951'23.6
/;

.
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5. Second Example.

Given the three angles of a triangle, solve for the three sides.

(A) SOLUTION BY LOGARITHMS

. . a sin E sin(A - E) . . b sin E sin(B - E)
Sin2

p:
=-

: ^5-^ ~--
,

Sin2 - =-
: ^---'-

2 sm B sm C 2 sm C sin A

. . c sinEsin(C - E)
Sin2 - =-

:
-T : ^5

-
.

2 sin A sm B

A = 6647' 0" ... T.963 3253 ... T. 963 3253
B = 4230'40" . . T . 829 7752 ... T . 829 7752
C = 9720'30". .T.996 4249 ... T. 996 4249 _

20638'10" T.826 2001 T.959 7502 T.793 1005

2E - 2638'10"
E = 1319' 5". .T.362 3558 . . . T.362 4003 . . . 1.362 4003

445
A - E = 5327'55"..1.904 9760

78
B - E - 2911'35" .............. T.688 1819

188
C - E = 84 1'25" . .......... ____ .......... . . T.997 6331

T.267 3841 T.050 6010 T.360 0334
-1.826 2001 -1.959 7502 -T.793 1005

,.1.441 1840 h T.090 8508 ,1.566 9329
log sin. ^T.720 5920 .5 T.545 4254 . T.783 4664

2 5834 2 3938 2 4575

86 316 89
68 2 280 5 82 8

17 8 35 5 62

= 3142'12.5"

a - 6324'25.0 /;

b - 41 6'31.2"
c - 74 48 ; 6.4"

2p - 179 19' 2.6"

Check formula : tan2
-^
= tan ^ tan tan tan ^r

i & & & &
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p - 8939'31 . 3" ip - 4449'45 . 6" .... T . 997 3891
211
25 3

p - a - 2615' 6.3" J(p
-

a) - 13 7'33.1" T.367 6676
285 6

9 5

p - 6 - 4833 / 0.1" i(p - 6) - 2416'30.0" T.654 1690

p-c= 1451'24.9" |(p-c) 725'42.4" T. 115 1788
328
65 6

F 2.1344970
F log tan ^ = 1.067 2485
~ = 639'32.4" 2 2041

444
E = 1319' 4.8" 366

78

(fi) SOLUTION BY NATURAL VALUES AND
CALCULATING MACHINE

cos A + cos B cos C , cos B + cos C cos A
COS a =

: ^ : 7= . COS =
: -^T-- 1 >

sin B sin C sin C sm A
cos C -f cos A cos B

COS C = : 1 : r; .

sm A sin B

cos sin

A 6647' 0" 0.394 2093 0.919 0207
B = 4230'40" 0.737 1463 0.675 7332
C = 9720'30" -0.127 7859 0.991 8018

20638 /

10
//

a = 6324'25.0" 0.447 6505
6724

219
217

2

6 - 41 6'31.3" 0.753 4637
4678

41
31 9

9 1

c 7448' 6.5" 0.262 1589
1892

303
280 8

22 2
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Check formula:

E as
* -f cos a -f- cos 5 4- cos c

A a b c
4 cos ~ cos o cos ~

0.850 7602
177 8
12 7

Ja 3142'12.5" 0.850 7792
0.936 3322

68
6 8

i& 2033'15.6" 0.936 3397
0.794 3852

176 4
23 5

Jc 3724' 3.2" 0.794 4052
cosE = 0.973 1061

1119

58
56

E = 1319 ;

5.2" 2
2E 2638 /

10.4".

6. Third Example.

In a triangle ABC, right-angled at C, the following parts
are known: a = 5936 /

30
//

,
b = 6422'. Find the angle A.

(A) SOLUTION BY LOGARITHMS

sin b = cot A tan a,

hence
tana

tan A
sin 6

o - 5936 /30" 0.231 7312
6 6422 ;

-T.955 0047

log tan A - 0.276 7265
167

98
A - 62 7'52".
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(B) SOLUTION BY NATURAL VALUES

. tana 1.705 0269
, QM 1COOtan A -T-T- = ^ nn* EQI^ "* 1 .891 1522

sin 6 0.901 5810

~428
A = 62 7'52".

7. Fourth Example.

Given the geographical coordinates of two points A and B
on a sphere, find the spherical distance between these two

points.

Let L and M, L' and M' be the longitudes and latitudes of

the points A and B, respectively (Fig. 18). Let x be the

arc AB.

FIG. 18. Geographical problem.

The formula (7), applied to the triangle NAB, immediately
solves the problem.

cos x = sin M sin M' + cos M cos M' cos(L L').

If the calculation is to be made by logarithms, write

cos x = sin M'[sin M + cos M cot M' cos(L L')].

Let

cot M' cos(L L') = tan w

and compute the auxiliary angle w.
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We have then

sin M' . _ ..
, .,,. . s

cos x = (sin M cos w + cos M sm w)
cos w

_ sin M' sin(M + w)
cos w

8. Numerical Application.

Take the following geographical coordinates: New York,
lat. 4043'N., long. 740'W.; San Francisco, lat. 3748'N.,

long. 12224'W. Assume the earth to be spherical and take

its radius to be 3960 miles.

What is the spherical distance (in degrees and minutes)

between New York and San Francisco? What is the actual

distance (in miles)? The coordinates being accurate to half

a minute, with what precision can you give the distance?

(A) SOLUTION BY LOGARITHMS

Let L, L' be the longitudes of San Francisco and New York.

Let M, M' be their latitudes.

j.** f /T T f\ sin M'sin(M -f- w)
tan w = cot M' cos(L L ), cos x = .v '

cos w

M' 4043' 0.065 1775
L 12224'30"
L' 74 (T 0"

L - L' 48 24'30" T.822 0487

T.887 2262
2024

238
217 5

20 5

w 3738'35.5" T.898 6243
M 3748' 65 2

M + w 7526 /35.5
// 8 2

log cos w = 1.898 6316
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M' T. 814 4600
M + ti; T.985 8270

27 5
2 8

T.800 2900
- 1.898 6316

log coax = T.901 6584
6649

65
x = 37 7'14.1" 636

1 4

The answer to the nearest half-minute is 37 7'.

Length of the great circle on the earth (R = 3960 miles).
2 0.301 0300
TT 0.497 1499
R 3.597 6952

log27rR = 4.395 8751
8678

73
70

2wR = 24,881. 42 miles 3

Length of 1, 1', 1" _ _ __

27rR 4.395 8751 4.395 8751 4.395 8751
360 -2.556 3025

21,600' -4.334 4538

1,296,000" -6.112 6050

1.8395726 0.0614213 2.2832701
37 1.568 2017
V 0.8450981
14.1" 1.149 2191

3.407 7743 0.906 5194 T.432 4892
7647 82 83

96 12

37 - 2,557 . 25 The error on J' is more than i mile.
7 8 . 0634

14. 1" - 0.2707 The answer to the nearest half-mile

2,565.58 is 2565* miles.



54 VI. EXAMPLES OF CALCULATIONS

(B) SOLUTION BY NATURAL VALUES AND
CALCULATING MACHINE

cos x = sin M sin M' + cos M cos M' cos(L L')-

M 3748'.. 0.6129071 0.7901550 L = 12224'30"
M' 4043' . . X 0.652 3189 X 0.757 9446 L' = 74 0' 0"

X 0.663 8174 L - I/ = 4824'30"

cosx = 0.797 3669
3792

123
117 2

3-37 7'14.2" 58
Tables give the lengths of arcs to the radius 1.

37 .... 0.645 7718
7

;

.... 0.002 0362 J' .... 0.000 1454
14 ;/

.... 0.000 0727 X 3960

0.6478807 J'
= 0.5758 miles

X 3960

x = 2565.6

The answer to the nearest half-mile is 2565 i miles.
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PROBLEMS

1. Let ABC be a tri-rectangular triangle (all angles and sides

equal to 90) ;
let p, q, r be the spherical distances from any

point P inside the triangle to the vertices A, B, C, respectively

(Fig. 19). Prove that

cos 2
p + cos2

q + cos 2 r = 1.

90,

FIG. 19. Distances from a point inside

a tri-rectangular triangle to the vertices.

In the triangle CAP, by formula (7),

cos p = sin r cos x.

Likewise, in the triangle BCP,

cos q = sin r sin x.

Squaring and adding, in order to eliminate x, we get

cos2
p + cos2

q = sin2 r = 1 cos2
r,

whence the desired relation.

55
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2. A point P is located inside a tri-rectangular triangle ABC.
Let x, y, z be its distances from the sides (Fig. 20). Prove

that

sin 2 x + sin 2
y + sin2 2 = 1.

90

FIG. 20. Distances from a point inside

a tri-rectangular triangle to the sides.

Join PA, PB, PC and let these arcs be p, q, r.

Let the arcs x, y, z intersect the sides BC, CA, AB in D,

E, F. Let BD =
u, CE =

v, AF = w.

The two right-angled triangles BDP and GDP yield the

relations:

cos q = cos x cos u
t

cos r cos x sin u.

On squaring and adding, we get

cos2 x = cos2
q + cos2

r.

Likewise,
cos2

y = cos2 r + cos2 p,

cos2 z = cos2
p + cos2

q.

On addition, and in view of the fact that cos2
p + cos2

q +
cos2 r = 1, these three equations give

3 -
(sin

2 x + sin2
y + sin2

z) = 2,

whence the desired relation.
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3. Let p, q, r and />', q' 9 r' be angles which two straight lines

OP and OP' make with Cartesian coordinate axes (Fig. 21).

Prove that the angle x between these two directions is

given by

cos x = cos p cos p' + cos q cos q' + cos r cos r'.

FIG. 21. Angle between two directions (perspective drawing).

Consider a sphere drawn with the origin as center. Let

the radius of that sphere be taken as the unit of length.

Produce the arcs ZP and ZP' to their intersections, Q and Q',

with XY. Let XQ =
y, XQ' =

y'.

In the triangle PZP',

cos x cos r cos r' + sin r sin r' cos (y
r

y),

or

cos x = cos r cos r' + sin r sin r' cos y' cos y

+ sin r sin r' sin ?/' sin y.

In the triangle XPQ:

cos p = sin r cos y.
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In the triangle XFQ':

cos p
f = sin r' cos y

f

.

Likewise, in the triangles YPQ and YP'Q':

cos q = sin r sin y, cos q' sin r' sin y'.

Hence

cos x = cos r cos r' + cos p cos p' + cos q cos #'.

4. In a triangle ABC (Fig. 22), an arc x, drawn through one

of the vertices C, determines on the opposite side c the arcs

BD = p and AD =
q. Prove that x is given by

sin c cos x = sin p cos 6 + sin q cos a.

c

FIG. 22. Arc through one of

the vertices.

Let y designate the angle CDB. We have

cos a = cos p cos x + sin p sin x cos y,

cos b = cos <? cos x sin <? sin x cos y.

Multiply the first equation by sin q, the second by sin p,

and add the two together, so as to eliminate y. We get

sin q cos a + sin p cos b = sin (p + q) cos x,

which is the desired relation; and which may also be written
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in the form

sin p cos 6 + sin q cos a
cos x = r^ -

.

sine

Applications.

(i) A median in terms of the sides.

In this case, p q =
^c. The general formula becomes

. c , . ,
x

a + b a b
sin jr (cos a + cos 6) cos ^ cos ~

<u L L
COS X = =

c
sm c cos -=

(ii) A bisector in terms of the sides.

In this case, angle ACD = angle BCD = ^C. We have

sin p __
sin a , sin q _ sin b

sin C sin y sin C sin i/

'

whence
sin p _ sin a

sin <? sin 6
'

Now, since p + q = c,

sin(c q) _ sin a

sin q

~~

sin 6
'

which leads to

, sin a + sin b cos c
cot q =

: r -. .

sin 6 sm c

Hence

1 vsin b sin c
sin q

Vl + cot2
q Vsin2 a + sin2 6 + 2 sin a sin 6 cos c

Likewise (making q into p and interchanging a and 6),

sin a sin c
sin

Vsin2 a + sin2 6 -f 2 sin a sin 6 cos c
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On substitution, the general formula becomes

sin (a + b)
cos x

Vsin2 a + sin2 6 + 2 sin a sin b cos c

(iii) An altitude in terms of the sides.

In this case, y = 180 - y = 90. The general formula,
thanks to the formulae of right-angled triangles

cos a = cos x cos p and cos b = cos x cos q,

can be simplified as follows

cos a cos b
cos x = =

.

cos p cos q
From the relation

cos p _ cos a

cos q cos b
'

by transformations similar to those used in (ii), we deduce

, cos a cos b cos c
tan q =

j
-7

,

cos 6 sin c

whence

1
__ /.

,
, _ Vcos2 a + cos2 6 2 cos a cos 6 cos c

^ J.
|

VlAlli U _ .

cos q cos o sin c

It follows that

1
cos x = - Vcos2 a + cos2 6 2 cos a cos b cos c.

sin c

5. A point P is located (Fig. 23) between two great circles

AC and BC. The distances from P to these great circles are

p and g, respectively. The angle ACB between the great
circles is C. What is the distance x from P to the intersec-

tion of the two given great circles?

Let ACP =
y, whence BCP = C -

y. The two right-

angled triangles give

sin p sin x sin y, sin q = sin x sin (C y).
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Eliminate y. The first equation gives

sm p ,

sin y = -T -
,

whence cos y =

Substituting in the second equation, we get

61

x """

sn

sin q = sin C Vsin2 x sin2 p cos C sin p.

c

FIG. 23. Point between two

great circles.

Transposing and squaring,

. , . , (sin q + cos C sin t>)
2

sin' x - sm* p = ^^ ,

whence

sin2 x

sin2
p sin2 C + sin2

q + cos2 C sin2 p + 2 sin p sin g cos C
sin2 C

and, finally,

Sm X ~
sin c Vsin2

p + sin2
5 + 2 sin p sin q cos C.

Numerical Application. What is the latitude of a point

in the Northern hemisphere, knowing its distances from the

zero meridian (45) and from the 90-meridian (30)?
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Let L be the latitude. The above formula becomes

cos L = Vsin2 45 + sin2 30,

T
^

cos L = --
,

whence
L = 30.

Remark. Note that, in this particular example, the point

is located within a tri-rectangular triangle, so that (Problem 2)

sin2 45 + sin2 30 + sin2 L = 1.

6. In a spherical triangle (Fig. 24), the cosine of the arc which

connects the middle points of two sides is proportional to

the cosine of half the third side
; the factor of proportionality

is the cosine of one half of the spherical excess.

Required to prove:

*)' h
cos x = cos E cos -

, cos y = cos E cos
^ >

cos z - cos E cos -
.

FIG. 24. Arc that connects the mid-

points of two sides.

Proof. In the triangle AEF,

b c
,

. b . c ,

cos x = cos ~ cos 5 + sin ^ sm ^ cos A.
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In the triangle ABC,

cos a cos b cos c + sin b sin c cos A.

Taking cos A from each equation, and equating the two

values, we get

b c
COS X COS COS jr ,

2 2 cos a cos b cos c

. b . c . . b . c b c'
sm - sm x 4 sin ^ sin ^ cos ^ cos ~

L Jj A

Hence

cos a

cosx =
A

C
4 COS jr COS jr

6 c
cos a + 2 cos2

o + 2 cos2

X4 COS pr COS ^
2i tli

CQS a + (1 + cos 6) + (1 + cos c)

^
5 c

4 cos - cos ^
z ^

1 -f cos a + cos 6 + cos c-T- .

. 6 c
4 cos ~ cos ^

This expression, divided by cos -=
,
is equal to cos E (Euler's

formula) . Hence

cos x = cos E cos ~ .

Likewise for the other two formulae.
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*Second Proof. In a plane triangle

c' = a' cos B' + b' cos A'.

This formula, applied to the derived triangle (Fig. 11), where

A' = 180 - A, B' = E, C' = A - E, gives

be a ^ . b . c .

cos
55
cos K = cos ~ cos E sm ^ sm ~ cos A

2t & Z &

or

^ a b c
,

. b . c .

cos E cos n = cos o cos 5 + sm - sm ^ cos A,
A A i t

which is equal to cos x, as seen in the triangle AEF (Fig. 24).

Remark. The formula

cos x = cos E cos ~
&

can be derived directly in the following way.

o

FIG. 25. Geometrical construction

(perspective drawing).

Construction. Join (Fig. 25) the vertices A, B, and C to the

center of the sphere of unit radius (OA = OB = OC = 1).
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Join to the middle points E and F of the sides b and c.

Draw the chords AB, BC, and CA. Join H, the point of

intersection of OE and CA, to K, the point of intersection

of OF and AB.

Proof. The formula giving a relation between the three

sides and one of the angles of a plane triangle is applied to

the triangle OHK.
Since the angle COA =

6, we have, in the plane OCA,

Likewise

OH = cos ~ .

/

OK = COS j: .

Since E is the middle point of the arc CA, H is the middle

point of the chord CA. Likewise, K is the middle point of

C*H\ n.

AB. Hence, in the triangle ABC, HK = ^ = sin ~
,
for

A &

the chord subtending an arc is equal to twice the sine of half

the arc ( CB = 2 sin
| j

.

Now the angle EOF is measured by the arc EF = x.

By plane trigonometry, we have, in the triangle OHK,

sin2 jr
= cos2 ~ + cos2 ~ 2 cos ^ cos ~ cos #,

A U Li & 4

whence

2 cos2 ~ + 2 cos2

|
- 2 sin2 ~

cos x = z
,

A b c
4 cos cos ^& A

(1 + cos 6) + (1 + cos c) (1 cos a) a
cos x = -^ ^-i-^ LT cos x ,

. a b c a 2
'

4 COS <r COS ^
COS

^
COS

^

COS X = COS E COS x .
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7. The area of an equilateral triangle is S/n, where S desig-

nates the area of the sphere. Find the side x of the triangle.

Let A be the angle of the triangle. By Girard's theorem

(Appendix I),

1 }(3A -
180) , . n + 4 - no_ - * L whence A = 60 .

n 360
* n

The side x is given in terms of the angles by the fundamental

formula (10)

cos A = cos2 A + sin2 A cos x,

from which we deduce

cos A cos A
cos x

1 cos A . 9 A
2 sm*

or, after substitution,

COS X =

Numerical Application. Take n = 4. Show that x *arc

cos ( -J).

cos 120 -\ ,

x = 180 y, where cos y =
J.

log cosy = 1.522 8787

9002

215

178 5

36 5

y = 7031'43.6"

x = 109 28'16.4".
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8. Given the dihedral angle (or edge angle) a between two

slant faces of a regular n-sided pyramid, calculate the face

angle x between two adjacent slant edges (Fig. 26).

s

Fio. 26. A regular pyramid.

The base of the pyramid is an n-sided regular polygon;

the interior angle between two sides is equal to

y = ^-? 180.
n

Around the vertex S draw the unit sphere, so as to replace

the trihedron S by a spherical triangle. Decomposing this

isosceles triangle in two right-angled triangles, we get im-

mediately

whence

. y . ot x
sm ^ = sm ^ cos ~ >

sin Q()0
x n

COS^r
2 . asm-
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x
Discussion. The problem is possible only if < cos ~ < 1-

4U

X X
It is obvious that cos cannot be negative, as must be

)
smaller than 90. ) The first condition demands

sin 90 > 0,n '

which implies n >: 3. ( Note that sin -= is always positive,
j

The second conditions requires

sin
75 > sin 90,
A n

that is to say a > 180, which is evident (by geometry).

Numerical Application. In a regular hexagonal pyramid,
let a = 170. The general formula becomes

x sin 60 1 .937 5306
COS

2 sin 85 1.998 3442

log cos
I
= 1.939 1864

1953

89

84

5

I
= 2937'7.4"

x = 5914'14.8".

9. Volume of a parallelepiped.

Let OA =
a, OB =

6, OC =
c, be three edges making with

one another (Fig. 27) the angles BOG = a, COA = ft

AOB = 7. Through C pass a plane normal to OA and con-

taining CD, perpendicular to the plane AOB. The angle



PROBLEMS 69

CED = A is the dihedral angle of the edge OA. Draw the

unit sphere around the vertex 0.

FIG. 27. Volume of a parallelepiped.

V = ab sin y . CD = ab sin 7 . CE sin A = abc sin 7 . sin /3 sin A.

But

A A
sin A = 2 sin cos

= 2 Vsin p sin (p a) sin (p ff) sin (p 7)

sin /3 sin 7
'

in which 2p = a + + 7, from the formulae (8).

It follows that

V = 2a6c Vsin p sin (p a) sin (p 0) sin (p 7).

Special Cases.

Volume of a rhombohedron (b
= c = a, /?

= 7 = a) :

TT- r 7V = 2a3
.

sin3
a
-= .

Volume of a right-angled parallelepiped (a = = 7 = 90) :

V = a6c.

Volume of a cube (6
= c = a, a =

j3
= 7 = 90) :

V = a3
.



CHAPTER VIII

EXERCISES1

1. The face angles of a trihedron measure 50. Calculate one of

the dihedral angles (edge angles) .

2. In a triangle ABC, given b = 45, c = 60, A = 30. Find B.

3. Two triangles ABC and BCD, both right-angled at C, have a

side of the right angle in common, BC = 5936'30". The other

side about the right angle is known in each case: CA = 6422',
CD 52 5'. Find the hypotenuses AB and BD.

4. Given, in a right-angled triangle (C = 90), cose = 1/V3 and
b = 45. Calculate the other two angles, each from the data only,

and express the area of the triangle as a fraction of the area S of the

sphere on which it is drawn.

5. Show that if (C - E) : A : (B - E) = 2 : 3 : 4, then

2 cos i(C - E) sin %(b + c)/sin \a.

[Hint: it is known that if the angles of a plane triangle A'B'C' are

in the ratios A' : B' : C' = 2 : 3 : 4, then 2 cos JA' = (a' + c')/b'.]

6. An equilateral triangle ABC, with a = b = c = 30, is drawn
on a sphere of radius R. Find the area of the triangle expressed in

dm2
if R = 6w.

7. Let O, O', O" be the middle points of the three edges of a cube

intersecting in the same vertex C. Calculate the elements of the

trihedron whose edges are OC, 00', OO".
8. In an isosceles triangle, given b = c = 32 and B = 78. Find

the side a.

9. In a regular tetragonal pyramid, the altitude is equal to one

half the diagonal of the base. Calculate the dihedral angle between
two adjacent slant faces.

10. Express sin (a 4- b) /sin c in terms of the three angles of an

oblique-angled triangle.

1 Most of these exercises are questions that were asked by Cesaro
at the entrance examination of the University of Lie"ge.
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11. The arc x that connects the middle points of two sides of an

equilateral triangle of side a is given by 2 sin \x tan Ja. (Compare
Problem 6, Chapter VII.)

12. In a regular tetragonal pyramid, the angle of a face at the

apex measures 60. Calculate the dihedral angle between two ad-

jacent slant faces.

13. In a regular pentagonal pyramid, the angle of a face at the

apex measures 30. Calculate the dihedral angle between two ad-

jacent slant faces.

14. The altitude CH of a triangle ABC, right-angled at C, inter-

sects the hypotenuse AB at H; arc AH = b' and arc BH = a'.

Prove that

*t "' sin2
b' _

I . n T
~ 1 .

sin2 a sin 2 6

15. Given a tri-rectangular trihedron O,XYZ. Plot OP =
2,

OQ =
3, OR =

4, on the edges OX, OY, OZ, respectively. Calcu-

late the elements of the trihedron P, OQR.
16. Let ipi> PI be the longitude and polar distance (or colatitude)

of a point PI; <?A, PA, those of a point A. A 180-rotation about A
brings PI in P2. What are the longitude <pt and the polar distance

P2 of P2?

17. Let AB - p, AC =
q, AD = r be three edges of a right-

angled parallelepiped . Calculate the elements of the trihedron whose

edges are DA, DB, DC. Numerical application: p =
3, q = 4,

r = 5.

18. In a quadrantal triangle (c = 90), given C and 2p. Find

(1) sin a sin 6; (2) sin A sin B.

19. In a right-angled triangle (C = 90), given the hypotenuse c

and the spherical excess 2E. Find: (1) sin a sin 6; (2) sin A sin B.

20. Given an equilateral triangle whose side is equal to 60. Find

the side of the triangle formed by erecting, at each vertex, a perpen-

dicular to the corresponding bisector.

21. Solve a quadrantal triangle (a = 90), given: (1) c, C; (2)

A, b + c.

22. Prove the formulae of a quadrantal triangle (a = 90) :

sin p SB cos JB cos iC/sin iA,

cos p = sin JB sin iC/sin JA,

tan p = cot iB cot JC.
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23. Consider a regular pentagonal prism with altitude h and the

side of the base equal to a. Join 0, one of the base vertices, to P
and Q, the top vertices opposite the two adjacent vertical faces.

Calculate the angle POQ. Numerical application: a =
4, h = 8.

24. Same question for a hexagonal prism. Numerical application :

a = 5, h - 5.

25. Join a point P, inside an oblique-angled triangle ABC, to the

vertices and produce the arcs AP, BP, CP to their intersections, D,

E, F, with the sides of ABC. Prove that

sinCE sin AF sin BD
sin EA sin FB sin DC

26. In a tri-rectangular triangle ABC, join the middle points B'

and C' of the sides AB and AC by the arc B'C'. Find the ratio of

the areas of the triangles AB'C' and ABC.
27. In a triangle ABC, let a, 0, 7 be the lengths of the bisectors.

Prove:

(1) cot a cos JA -f cot /3 cos JB -f- cot 7 cos JC
= cot a -f- cot b -f- cot c;

cot a cot j8

(2)
cos JA(cos B H- cos C) cos JB(cos C -f- cos A)

cot 7
cos iC(cos A -f cos B)

'

. 2 Vsin b sin c sin p sin (p a)

Vsin2 6 + sin2 c -f- 2 sin 6 sin c cos a

28. In a triangle ABC, given a - b 90 and C 60. Join any

point P inside the triangle to the vertices A, B, C by arcs x, y, z.

Find a relation between x, y y
z,

29. In a quadrilateral ABCD, given :B C = D = 90, BD =
a,

and AB b. Calculate the diagonal AC.

30. Show that the radii Rc , R, Ra of the circumscribing, inscribed,

and escribed circles of a spherical triangle are given respectively by:

2 P
- cosS

tan KC

where 2S = A + B -f C;
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sm(p a) sin(p 6) sin(p c)

where 2p a 4- b + c;

tan2 R%

sin p

tan2 R = sin p sin(p
-

6) sin(p c)

sin(p a)
'

where R is the radius of the escribed circle which touches a.



ANSWERS TO EXERCISES

Numerical applications have been calculated with five-place tables.

The answer is followed, between parentheses, by the number of the

formula to be applied.

1. 6658' (8).

2. B = 496'24" (12).

3. AB = 7721'28", BD = 7153'14" (13).

4. A = 60, B = 45, T = S/48 (15 and 16, no tables of logarithms

needed).
5. The desired relation is read off the triangle of elements (Fig. 9).

6. E = 3.5, T = 439.8 dm2
(5a and Appendix 1).

7. COO' = COO" = 45, O'OO" = 60, edge angle OC = 90,

edge angle OO' = edge angle OO" = 5444' (13 and 18).

8. a = 1448'17" (16).

9. 10928' (14).

10. sin(a -f b)/sin c = (cos A -f cos B)/(l - cos C). Apply (3) (4).

11. Apply (5a).

12. 10928' (14).

13. 11346' (17).

14. Apply (15) twice. Use sinz z + cos2
a; = 1.

15. Edge angle PO = 90, OPR = arctan 2 = 6326' 5", OPQ
- arctan (3/2) = 5618'35", edge angle PR = 59 11 '33", edge angle

PQ = 6724 /

41", RPQ - 7538'11". Apply (13) and (18), the

latter twice.

16. cos p2 = cos 2pA cos pi + sin 2pA sin pi cos (V?A ^0,

sin (<f>2 <PA) sin pi sin (V>A ^0/sin p2 . Apply Problem 4, Ch.

VII and (7). (This question is encountered in crystallography.)

17. The spherical triangle ABC is right-angled at A. Its parts

are: a = 4757 /
51

//

,
b = 3839 r

36", c = 3057'50//

,
B = 5715 /

15",

C 4350'17 /;
. Apply (13) and (18). First, determine 6 and c by

plane trigonometry.
18. sin a sin b = sin 2p/(l + cos C), sin A sin B = sin 2p

(1 cos C). Apply (8b), then combine with (9).
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19. sin a sin b = sin2E(l + cos c), sin A sin B = sin2E/(l cose).

Apply (11) and (8), or consider polar triangle of quadrantal triangle

in preceding exercise.

20. 90 (8a, then 16; no tables of logarithms needed).
21. Given c, C. Write sin & = cosc/cosC, sin A = sinC/sinc,

sin B = cot c/cot C. Apply (7) (9) (12).

Given A, b + c. Express cos i(B C) and cos i(B -f C) in

terms of J(& -f c) and JA by means of (3) (4), hence B and C. Like-

wise express sin i(& c) in terms of $(B C) and JA by means of

(3) or (4). Since (6 -\- c) is known, you get 6 and c.

22. Express the corresponding relations in the (right-angled) polar

triangle of the given triangle. Apply the Law of Sines to Fig. 11.

23. sin i(POQ) = sin 18 sm c, with tan c 2(a/h) cos 36. Ap-

ply (15). For a = 4 and h =
8, POQ = 2224'53".

24. Apply (7) or (15). For a/h = 1, POQ = 5119' 4".

25. Apply (9). Note three pairs of equal angles having common
vertex P. (This question is encountered in crystallography.)

26. 0.216 (14 or 7, and Girard's Theorem, Appendix 1).

27. (1) Apply (12). (2) Apply (10) (9). (3) Apply (12) twice.

28. 4 (cos
2 x -f cos2

y cos x cos y) = 3 sin2 z. Apply (7) and

sin2 a -f cos2 a = 1.

29. Let x = AC. It is given by the biquadratic equation cos4 x

cos2 a cos2 b cos2 x cos2 a cos2 b sin2 6 = 0. Apply (13) three

times and (15) twice.

30. Consider a circle inscribed in a spherical triangle. It is tangent

to the sides, The spherical distances from a vertex to the nearest

two points of tangency are equal. The radii to the points of tangency

are perpendicular to the corresponding sides. Apply the formulae

of right-angled triangles.



APPENDIX 1

SPHERICAL AREAS

1. Sphere. The area S of a sphere is equal to four times that of a

great circle, that is to say S = 4irR2
,
if R designates the radius.

2. Lune. The area of a lune of angle A is to the area of the sphere
as A is to 360.

Consider a number of meridians; they intersect in the North and

South Poles. Any two meridians bound a lune (for example, the

meridians 75W and 80W). The angle of the lune is the angle
between the two meridians (in this case, 5); it is measured by the

arc they intercept on the equator. Obviously lunes of equal angles

have equal areas (for they can be made to coincide). The areas of

lunes are proportional to their angles (this is proved in the same
manner as the proportionality of angles at the center of a circle to

the arcs they subtend), whence the desired proposition.

3. Spherical Triangle. GIRARD'S THEOREM: The area of a spher-

ical triangle is to the area of the sphere as half the spherical excess

(expressed in degrees) is to 360.

FIG. 28. Area of a spherical triangle.

Consider a triangle ABC. Join its vertices A, B, C to the center O
of the sphere (Fig. 28) and produce to the antipodes A', B'

f
C'.

Complete the great circles that form the sides of the triangle ABC.
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The hemisphere in front of the great circle BCB'C' is thus divided

into four triangles:

Ti ABC, T 2 AB'C', T, - AB'C, T 4
= ABC'.

From the construction it follows that the triangle A'BC is equal to

the triangle T 2
=* AB'C'. Hence, designating by lune A the area

of a lune of angle A,

Ti -f T 2
= lune A.

Moreover

Ti + T, = lune B
and

Ti + T 4
= lune C.

On adding and transposing,

2 Ti = lune A -f lune B + lune C - (Ti + T 2 -f T 3 -f T 4),

whence

2Ti A + B + C - 180 ^ 2JS
8 360

"
360

and, finally,

II JL
S 360*
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FORMULAE OF PLANE TRIGONOMETRY

DEFINITIONS: versine, coversine, exsecant, coexsecant, haversine.

vers x = 1 cos x, exsec x = sec x 1
,

coverso: = 1 sin x, coexsecx = cscx 1,

hav x = J vers x = i(l cos x) = sin2
Jx.

sin 30 =
i, sin 45 = ^ ,

sin 60 = ^? ,
sin 90 = 1.

/L i

Complementary angles, x and (90 x), have complementary

trigonometric functions, with the same sign:

sin x = cos (90 -
x), tan x = cot (90 -

x), sec x = esc (90 x).

Supplementary angles, x and (180 x), have the same trigo-

nometric functions, with opposite signs except sine and cosecant.

Antisupplementary angles, x and (180 -f x), have the same trigo-

nometric functions, with opposite signs except tangent and cotangent.

Equal angles of opposite signs, x and x, have the same trigo-

nometric functions, with opposite signs except cosine and secant.

1 cot x
cosx =

Vl + cot2 x
'

sin (x y) = sin x cos y db sin y cos x,

cos (x db y) = cos x cos y =F sin x sin #.

, N tan x . tan y

sin 2x = 2 sin x cos x, 2 sin2 Jx = 1 cos x,

cos 2x = cos2 x sin2
x, 2 cos2 Jx = 1 + cos x,

, 2 tan x x o i 1 cos x
tan 2x =

;
-r r , tan2

\x = ^ ;

-
.

1 - tan2 x ' 3
1 4- cos a?
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1 -f- tan x ,AKO , \ cot as -t- 1 , //4 _ x- IT = tan (45 H- x), ? = cot (43 x).
1 tan a;

v "
cot x 1

v '

2 sin x cos y = sin (x -f- y) -f- sin (x y),

2 cos x cos 2/ cos (x -f- ?/) -f- cos (x y},

2 sin x sin ?/
= cos (x y) cos (x + 2/)

sin P + sin Q = 2 sin J(P -f- Q) cos i(P - Q),
sin P - sin Q = 2 cos ^(P + Q) sin J(P - Q),
cos P -f cos Q = 2 cos i(P -f Q) cos J(P - Q),
cos P - cos Q = 2 sin $(P + Q) sin KQ - P).

cos P cos Q . . /T^ , ,^.1. . , /rA -TJV- tan i(P + Q) tan i(Q - P) '

SOLUTION OF TRIANGLES

a b cLAW OF SINES:
sin A sin B sin C "

c 6 cos A
Corollary: cot V =

LAW OP COSINES: o2 = b2 + c2 26c cos A.

T _, tan KB - C) tanKB-C) b - c
LAW OP TANGENTS:

tan >(B + c)
-

cot iA
=
5^^

Half-angle formulae: -

(2p = a -f- 6 + c)

cos2 - = p(p
r

"" a)
,2 be

A (p-6)(p -c)
TT =-7
-

r
-

.

2 p(p a)

Area o/^e triangle: T = Vp(p a)(p 6)(p c).
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