SIGHT REDUCTION	with hav-Doniol method	$\begin{aligned} & \text { Hc: } \\ & \begin{array}{l} \text { hav }(s 2 s)= \\ \text { Hc } \\ \text { Hc } \quad=90^{\circ}-\mathrm{s} 2 \mathrm{~s} \end{array} \end{aligned}$	$\text { set: } \begin{aligned} P D & =90^{\circ}-d \\ N & =\operatorname{hav}(L-H c) \\ P & =\operatorname{hav}(L+H c) \\ Q & =P+N \end{aligned}$		Azimuth Z:$\operatorname{hav}(Z)=[\operatorname{hav}(P D)-N] /(1-Q)$
L: latitude	set: $\mathrm{n}=$ hav (L-d)				
d: declination	$p=\operatorname{hav}(L+d)$				Q ~ 0 : = [hav (PD) - N] * (1+Q)
LHA: Loc. Hour Angle	$q=p+n$	s2s: ship-to-star distance			
Example:	$\mathrm{n}=\operatorname{hav}\left[10^{\circ}-(-40)^{\circ}\right]=.1786$	hav (s2s) $=.1786+.7544$ * 2500	PD $=90^{\circ}-(-40)^{\circ}$	$=130^{\circ}$	hav (PD) $=.8214$
$\mathrm{L}=10^{\circ}$ (North)	$p=$ hav $\left[10^{\circ}+(-40)^{\circ}\right]=.0670$	$=.3672$ so, from table:	$N=\operatorname{hav}\left(10^{\circ}-15^{\circ} 24\right)$	$=.0022$	hav (Z) = (.8214-.0022)/.9495
$\mathrm{d}=-40^{\circ}$ (South)	Q $=.2456$	s2s $\quad=74{ }^{\circ} 36$	$\mathrm{P}=\operatorname{hav}\left(10^{\circ}+15^{\circ} 24\right)$	$=.0483$	$=.8628$ so, from table :
LHA $=60^{\circ}$	hav(LHA) $\quad=.2500$	$\mathrm{Hc}=15^{\circ} 24$	Q	$=.0505$	Z = 136 ${ }^{\circ} 31$; adjust: $180-\mathrm{Z}=43^{\circ} 29$
hav - DONIOL.xls/pdf					$H_{\text {H }} \chi^{\text {Thanks to G. Rudzinsky, L. Bergman }}$

