Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Но	GHA	Dec
Sight 1					
Sight advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
\int_{0}^{D} 1	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^L \frac{1}{\cos(L + x \cos C)} dx$		degrees
$= \frac{180}{\pi} \tan C \left[ln \left(\frac{\tan \left(45^{\circ} + \frac{L + D \cos C}{2} \right)}{\tan \left(45^{\circ} + \frac{L}{2} \right)} \right) \right]$		D = nautical miles traveled, divided by 60
Special case for traveling due east or west (C is 90° or 270°): $\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		L = Original declination

$$\begin{array}{lll} \cos(D_{12}) & = \sin(Dec_{1}) \sin(Dec_{2}) + \cos(Dec_{1}) \cos(Dec_{2}) \cos(GHA_{1} - GHA_{2}) \\ \cos(A) & = \left[\sin(Dec_{2}) - \sin(Dec_{1}) \cos(D_{12})\right] / \left[\cos(Dec_{1}) \sin(D_{12})\right] \\ \cos(B) & = \left[\sin(H_{2}) - \sin(H_{1})\cos(D_{12})\right] / \left[\cos(H_{1})\sin(D_{12})\right] \\ \sin(Lat) & = \sin(Dec_{1})\sin(H_{1}) + \cos(Dec_{1})\cos(H_{1})\cos(A\pm B) \\ \cos(LHA_{1}) & = \left[\sin(H_{1}) - \sin(Dec_{1})\sin(Lat)\right] / \left[\cos(Dec_{1})\cos(Lat)\right] \end{array}$$

D_{12}	A	В
	A+B	A-B
Lat		
LHA ₁		

Long = $LHA_1 - GHA_1$ West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Но	GHA	Dec
Sight 1					
Sight advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$0 \qquad i \in \int_{-\infty}^{D} 1$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^{\infty} \frac{1}{\cos(L + x \cos C)} dx$		degrees
$= \frac{180}{\pi} \tan C \left[ln \left(\frac{\tan \left(45^\circ + \frac{L + D \cos C}{2} \right)}{\tan \left(45^\circ + \frac{L}{2} \right)} \right) \right]$		D = nautical miles traveled, divided by 60
Special case for traveling due east or west (C is 90° or 270°): $\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		L = Original declination

 $= \sin(\text{Dec}_1) \sin(\text{Dec}_2) + \cos(\text{Dec}_1) \cos(\text{Dec}_2) \cos(\text{GHA}_1 - \text{GHA}_2)$ $cos(D_{12})$ cos(A) = $[\sin(Dec_2) - \sin(Dec_1) \cos(D_{12})] / [\cos(Dec_1) \sin(D_{12})]$ cos(B) = $[\sin(H_2) - \sin(H_1)\cos(D_{12})] / [\cos(H_1)\sin(D_{12})]$ $= \sin(Dec_1)\sin(H_1) + \cos(Dec_1)\cos(H_1)\cos(A\pm B)$ sin(Lat)

 $cos(LHA_1) = [sin(H_1) - sin(Dec_1)sin(Lat)] / [cos(Dec_1)cos(Lat)]$ Α

	A+B	A-B
Lat		
LHA ₁		
Long = LHA ₁ – GHA ₁		

В

West longitude is negative

 D_{12}

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Но	GHA	Dec
Sight 1					
Sight advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
\int_{0}^{D} 1	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^L \frac{1}{\cos(L + x \cos C)} dx$		degrees
$= \frac{180}{\pi} \tan C \left[ln \left(\frac{\tan \left(45^{\circ} + \frac{L + D \cos C}{2} \right)}{\tan \left(45^{\circ} + \frac{L}{2} \right)} \right) \right]$		D = nautical miles traveled, divided by 60
Special case for traveling due east or west (C is 90° or 270°): $\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		L = Original declination

$$\begin{array}{lll} \cos(D_{12}) & = \sin(Dec_{1}) \sin(Dec_{2}) + \cos(Dec_{1}) \cos(Dec_{2}) \cos(GHA_{1} - GHA_{2}) \\ \cos(A) & = \left[\sin(Dec_{2}) - \sin(Dec_{1}) \cos(D_{12})\right] / \left[\cos(Dec_{1}) \sin(D_{12})\right] \\ \cos(B) & = \left[\sin(H_{2}) - \sin(H_{1})\cos(D_{12})\right] / \left[\cos(H_{1})\sin(D_{12})\right] \\ \sin(Lat) & = \sin(Dec_{1})\sin(H_{1}) + \cos(Dec_{1})\cos(H_{1})\cos(A\pm B) \\ \cos(LHA_{1}) & = \left[\sin(H_{1}) - \sin(Dec_{1})\sin(Lat)\right] / \left[\cos(Dec_{1})\cos(Lat)\right] \end{array}$$

D_{12}	A	В
	A+B	A-B
Lat		
LHA ₁		

Long = $LHA_1 - GHA_1$ West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Но	GHA	Dec
Sight 1					
Sight advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$0 \qquad i \in \int_{-\infty}^{D} 1$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^{\infty} \frac{1}{\cos(L + x \cos C)} dx$		degrees
$= \frac{180}{\pi} \tan C \left[ln \left(\frac{\tan \left(45^\circ + \frac{L + D \cos C}{2} \right)}{\tan \left(45^\circ + \frac{L}{2} \right)} \right) \right]$		D = nautical miles traveled, divided by 60
Special case for traveling due east or west (C is 90° or 270°): $\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		L = Original declination

 $= \sin(\text{Dec}_1) \sin(\text{Dec}_2) + \cos(\text{Dec}_1) \cos(\text{Dec}_2) \cos(\text{GHA}_1 - \text{GHA}_2)$ $cos(D_{12})$ cos(A) = $[\sin(Dec_2) - \sin(Dec_1) \cos(D_{12})] / [\cos(Dec_1) \sin(D_{12})]$ cos(B) = $[\sin(H_2) - \sin(H_1)\cos(D_{12})] / [\cos(H_1)\sin(D_{12})]$ $= \sin(Dec_1)\sin(H_1) + \cos(Dec_1)\cos(H_1)\cos(A\pm B)$ sin(Lat)

 $cos(LHA_1) = [sin(H_1) - sin(Dec_1)sin(Lat)] / [cos(Dec_1)cos(Lat)]$ Α

	A+B	A-B
Lat		
LHA ₁		
Long = LHA ₁ – GHA ₁		

В

West longitude is negative

 D_{12}