How To Make a Clark's Nomogram

In a typical Clark's nomogram, the left scale (1) and right scale (2) are arcs on the same circle or ellipse, and the center scale (3) is a vertical straight line.

Start with the equation that you wish to turn into a nomogram. Let's say it involves the parameters u, v, and w. Find five functions ($g_{1}, g_{2}, g_{3}, f_{3}$ and h_{3}) that express your equation in the following general form:

$$
g_{1} g_{2} f_{3}+\left(g_{1}+g_{2}\right) g_{3}+h_{3}=0
$$

where:
g_{1} is a function solely of the left (1) parameter,
g_{2} is a function solely of the right (2) parameter, and
g_{3}, f_{3}, and h_{3} are functions solely of the center (3) parameter.
Note that if you set $g_{3}=0$, the outer scales will lie on the same ellipse, and the center scale will be a vertical straight line. If you set $g_{1}=g_{2}$, the outer scales will lie on the same circle.

Most equations you are likely to want as a nomogram are simpler in form than the general relation above.
To make a Clark's nomogram for a really simple equation like $u v=w$, you can set $f_{3}=1$ and $g_{3}=0$; then we have $g_{1}=u, g_{2}=v$, and $h_{3}=-w$.

Or, to make a Clark's nomogram for $u+v=w$, another very simple case, set $f_{3}=0, g_{3}=1$, and again we have $g_{1}=u, g_{2}=v$, and $h_{3}=-w$.

In any case, once you have the five functions ($g_{1}, g_{2}, g_{3}, f_{3}$ and h_{3}) suitably defined, the "mapping equations" for the drawing the nomogram on Cartesian (x, y) graph paper are these:

Scale 1: $\quad x_{1}=a\left(-\frac{g_{1}}{1+g_{1}^{2}}\right), \quad y_{1}=b\left(\frac{g_{1}^{2}}{1+g_{1}^{2}}\right)$
Scale 2: $\quad x_{2}=a\left(-\frac{g_{2}}{1+g_{2}^{2}}\right), \quad y_{2}=b\left(\frac{g_{2}^{2}}{1+g_{2}^{2}}\right)$
Scale 3: $\quad x_{3}=a\left(\frac{g_{3}}{f_{3}+h_{3}}\right), \quad y_{3}=b\left(\frac{h_{3}}{f_{3}+h_{3}}\right)$
The constants a and b can be chosen and adjusted arbitrarily, to stretch the nomogram into a more readable shape.

These instructions are adapted from the extended treatment of nomography in chapter 32 of Survey of Applicable Mathematics, Karel Rektorys, ed. (The M.I.T. Press, 1969).

