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Gravity Assist (GA) is a kind of transfer orbit technology widely used in interplanetary
missions, which highly depends on navigation performance to succeed. The Orbital Dynamic
Equation is an essential component in the navigation system, affected by factors including the
numerical integrator, perturbing planets, integration step size, gravitational constant and
planet ephemerides. To analyse the impact factors mentioned above and investigate an
efficient system model, the propagation and navigation results are carried out in a Mars-assist
explorer scenario; a specific case study is also provided in this paper. The results indicate that
the planetary ephemeris uncertainty and integration size are the dominant error sources, and
the integration step size is the dominant impact factor on the real-time performance. In this
specific case, the ‘Orbital Dynamic Equation’ considering Sun and Mars perturbation is
suggested for integration by RK4 with 60 s integration step size. The conclusions drawn by
this study are particularly useful in the design, construction, and analysis of an autonomous
navigation system for a GA explorer.

KEY WORDS

1. Gravity Assist (GA). 2. Autonomous Navigation. 3. Orbital Dynamic Equation.

First published online: 30 March 2012.

1. INTRODUCTION. With the rapid expansion of deep space exploration of
the solar system, the velocity increment required for a direct ballistic transfer
significantly increases the cost of a mission beyond the acceptable limit. Fortunately,
Gravity Assist (GA) techniques can help an explorer travel between the planets
without propulsive capability limitations (Diehl, 1995). GA is described as the effect
when the explorer enters a planetary sphere of influence and gains or loses energy with
respect to the Sun. The energy change is caused by the rotation of the explorer’s
velocity vector under the influence of the secondary planet’s gravitational field
(Chobotov, 2002), which results in a change in the direction and magnitude of the
heliocentric velocity of the explorer (Lohar et al., 1997).
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Although the use of GA could reduce the propulsion requirement of space missions,
the challenge for a GA mission is to fly the designed tour accurately, which means not
only position but also time are tightly restricted for obtaining the proper energy from
the GA planet. Accordingly, the accuracy requirement for GA is as strict as that of a
planet encounter (Mancuso, 2004).
To ensure the success of the GA mission, the navigation system must be configured

appropriately. Two major navigation methods, ground-based navigation and
autonomous navigation, are used to meet the strict requirement of GA. The accuracy
of conventional ground-based navigation technologies is heavily dependent on the
knowledge of the ephemeris of the target celestial body. Additionally, ground-based
navigation is not a real-time process owing to the long signal delay caused by the
enormous distance between Mars and Earth. As a result, an autonomous navigation
system is a fundamental configuration for a successful GA mission because of the
excellent relative navigation accuracy and time performance. A total of 13 out of 17
GA missions launched by NASA have used autonomous navigation successfully,
including the Mariner 10, Voyager I/II, Galileo etc. Several current and planned deep
space missions will use an autonomous navigation system extensively in their
planetary ‘swing-bys’. GA strongly supported by an autonomous navigation system
is becoming a trend in future deep space missions.
The orbital dynamic equation is a fundamental element in autonomous navigation

system. The implementation of using very detailed environmental models on-board
(such as those used on the ground) is not feasible (Chobotov, 2002), owing to the
limitations in hardware capabilities for space application. An appropriate orbital
dynamic model is necessary for an autonomous navigation.
The basic dynamic equation involves a two-body problem, whereas other factors

considered as perturbations have a significant effect on the explorer orbit (i.e.,
perturbing planets, solar radiation, thruster’s impulse, etc.). Some research has been
focused on the numerical integration for the orbital dynamic equation of Earth
satellite, including numerical integration method and integration step size
(Montenbruck and Eberhard, 2000). The other investigations have been done on the
uncertainty of the parameters in the orbital dynamic equation (JPL, 2010; Vallado,
2005). However, little research has been conducted with respect to the influence of
these impact factors on accuracy and time cost performance of an autonomous
navigation system for a GA explorer. Therefore, aimed at determining a suitable
navigation system model, comparisons and analyses of the impact factors are provided
in this paper.
This paper is organized as follows: after the introduction, the navigation system

principle is described, followed in Section 2 by the orbital dynamic equation,
measurement model, and filter method. In Section 3, the major influence factors
affecting the performance of the dynamic equation are outlined and introduced. The
propagation and navigation simulation results are shown and compared in Section 4,
with several analyses performed based on these results. Conclusions are drawn in
Section 5. Finally, a list of nomenclature used in this paper is provided at Appendix A.

2. AUTONOMOUS NAVIGATION SYSTEM AND ORBITAL
DYNAMIC EQUATION. Navigation is the process of estimating the
explorer’s state variables (position and velocity) by comparing the difference between
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the measurement data and the calculated data. The core of the whole navigation
system is composed of orbital dynamic equation, measurement equation, and filter
algorithm.

2.1. Orbital Dynamic Equation. In general, the deep space explorer moves
along a heliocentric elliptical orbit, where the central body is the Sun and the other
planets are considered to be perturbations. Besides the perturbations from other
celestial bodies, solar radiation, thruster’s impulse, other factors also affect the motion
of the explorer. With those factors considered, the dynamic equations in a heliocentric
system can be described as follows, with the explanation of terms listed at
Appendix A:

ṙ = v

v̇ = −μs
rps
r3ps

−
∑N
i

μi
rpi
r3pi

− rsi
r3si

[ ]
+ aj+ap + as + ao


 . (1)

Assuming that X=[x, y, z, vx, vy, vz]
T, Equation (1) can be written as:

Ẋ(t) = g(X(t), t) + w(t). (2)

2.2. Measurement Equation. Different types of measurements can be used for
autonomous navigation, including the angle between pairs of celestial bodies,
angular diameter of extended bodies, and line of sight direction (Paluszek et al.,
2010). In this paper, the line of sight data derived by on-board imagers is used based
on the assumption that the attitude of the explorer is known. The original data from
the image are the line number (l) and the pixel number (p) of the optical centre of a
planet image. Therefore, the measurement model using the pixel number and the line
number is given via the lens equation (Synnott and Donegan, 1986) in Equation (3):
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Assuming that Z=[p, l]T, Equation (3) can be written as a general equation:

Z(t) = h(X(t), t) + v(t). (5)

2.3. Filter Method. Regarding the nonlinear problem of the Orbital Dynamic
Equation (Fang and Ning, 2008), the best known filter algorithms are the Extended
Kalman Filter (EKF) (Lee and Alfriend, 2004), Unscented Kalman Filter (UKF)
(Julier and Uhlmann, 1997; Julier et al., 2000), and Unscented Particle Filter (UPF)
(van der Merwe et al., 2000; Payne and Marrs, 2004). The UKF is used in this paper
because of the intensive computational time of UPF and the inaccuracy of EKF
(Ning et al., 2012).
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3. IMPACT FACTORS. According to Equation (1), two kinds of impact
factors would affect the orbit dynamic model performance. One kind of impact factor
is the uncertainty of the parameters in the equation, including:

. Perturbing planets (N ).

. Planetary ephemeris (rpi).

. Standard gravitational parameter (μi).

Another kind of impact factor is associated with the numerical integration, including:

. Numerical integration method.

. Integration step size.

These two kinds of factors are analysed and compared in the following sections.
Besides the factors mentioned above, the non-spherical gravity and the non-
gravitational factors such as thruster impulse, radiation pressure also affect the
navigation performance. However, they are several orders of magnitude smaller and,
in general, may be modelled as bias parameters (Christensen and Reinbold, 1974;
Miller et al., 2004), the effects of which are not included in this paper.

3.1 Perturbing Planets. When an explorer flies by a planet, the gravitational field
of that planet can significantly alter the heliocentric orbit followed by the explorer.
The gravitational force both of the Sun and the planet dominates the explorer’s
motion, whereas other planets and the non-spherical gravity of the assist planet also
have an effect on the orbit of the explorer. Taking the closest planet into con-
sideration, the force model is more accurate than the two-body model. However, as to
which planets and how many planets have to be included in the orbital dynamic
equation for orbit determination is yet to be analysed to obtain better navigation
performance, with respect to both accuracy and computation efficiencies.

3.2. Planetary Ephemeris. One of the major sources of navigation uncertainty is
associated with the planetary ephemeris (Standish, 2002). Three main numerical
ephemerides, the DE-series, EPM-series, and INPOP-series, are used widely in space
navigation (Kudryaytsey, 2010). The most famous one is the DE-series from the Jet
Propulsion Laboratory (JPL). The accuracy of the major planets in the solar system in
DE421 ephemeris (Folkner et al., 2008) is shown in Table 1.
The accuracy of ephemeris extrapolation into the near future (a year or two) will be

sufficient. However, it will decline with time (Folkner et al., 2008). Therefore, the
effect of ephemerides should be given attention in future space missions. The analysis
of the influence caused by the uncertainty of ephemerides is necessary because any
improvement in ephemerides will provide a corresponding improvement in the
navigation performance.

Table 1. Ephemeris Accuracy of DE421 in 2008.

Planet Accuracy

Mercury A few kilometres
Venus 200m
Earth 300m
Mars 300m
Jupiter Tens of kilometres
Saturn Tens of kilometres
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3.3 Standard Gravitational Parameter. As shown in Equation (1), the accuracy
of the standard gravitational parameter μ can affect the performance of the Orbital
Dynamic Equation. The standard gravitational parameters and the uncertainty of the
Sun and all planets are shown in Table 2 (JPL, 2010).

3.4. Numerical Integrator. Equation (2) is the differential equation describing
the motion of an explorer, which needs a numerical method for solution. A variety
of methods have been developed, and many of them have been applied in space
successfully (Montenbruck and Eberhard, 2000). RKF7th8th and RK4 are two
commonly used integrators in orbit determination. In general, an integration method
with step size control such as RKF78 is more efficient than a classical Runge–Kutta
integration method of the same order. However, if memory storage and implemen-
tation simplicity are more important, then the RK4 integrator may be preferred for a
lower computation time.
Each method has its own inherent advantages and drawbacks; hence, no integration

method is uniformly best for all applications, where best means fast, accurate, and
robust. Thus, the comparison of the computation time and accuracy between different
numerical algorithms is necessary.

3.5 Integration Step Size. Theoretically, an integrator with a large step size
provides the worst accuracy result but gives a better real-time performance.
Conversely, an integrator with a small step size shows the most satisfactory accuracy
results but needs intensive computation. Thus, an efficient step size should be
determined via analysis.

4. SIMULATIONS. In this section, both the orbit propagation results and
the autonomous navigation results are provided for comparison and analysis of
the influence of the different factors. The propagation results directly display the
accuracy of the orbital dynamic equation, whereas the navigation results show the
comprehensive performance.

4.1. Simulation Scenario. The trajectory of the explorer was created by the
Satellite Tool Kit Astrogator, where the initial state was set as follows:

. The epoch was 1 Mar 1997 at 00:00:00.000 UTGC.

. The semi-major axis was 193,216,365·381 km.

. The eccentricity was 0·236386.

Table 2. Standard Gravitational Parameter GM.

Celestial body Standard gravitational parameter GM (km3/s2) Uncertainty (1σ) (km3/s2)

Sun 1·32712440017987030×1011 ±8
Mercury 2·2032080486417923×104 ±0·91
Venus 3·2485859882645978×104 ±0·04
Earth 3·9860043289693934×105 ±0·0008
Mars 4·2828314258067127×104 ±0·1
Jupiter 1·26712767857796×108 ±100
Saturn 3·7940626061137289×107 ±98
Uranus 5·7945490070718741×106 ±23
Neptune 6·8365340638792599×106 ±15
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. The inclination was 23·455°.

. The right ascension of the ascending node was 0·258°.

. The argument of periapsis was 71·347°.

. The true anomaly was 85·152°.

The simulation period was from 1 July 1997 at 00:00:00.000 to 8 July 1997 at
00:00:00.000. The reference orbit was generated by the RKF89 numerical integrator,
which used fixed step (1 s). The explorer approached the closest position to Mars
within the period of 3 July 1997 to 4 July 1997, and the minimum distance between
Mars and the explorer was 5211 km. Figure 1 shows the GA process, where the
trajectory is seen to curve under the influence of the gravity of Mars. The position and
velocity of the explorer relative toMars are given in Figure 2. The planetary ephemeris
and the star database used in the simulation were the JPL DE421 catalogue and the
Tycho’s star catalogue, respectively. The near celestial bodies used in the measurement

Mars

Explorer

Trajectory

Jul 1 1997 00:00:00.00

Jul 8 1997 00:00:00.00

Figure 1. GA trajectory.
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Figure 2. Position and velocity of the explorer relative to Mars.
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were Mars, Phobos, and Deimos. The accuracy levels of the Mars, Phobos, Deimos,
and star sensors were set at 0·1 pixels. The optical characteristics of the Mars, Phobos,
and Deimos sensors are shown in Table 3. The simulation results presented in this
paper were run on a 2·66 GHz Intel Core 2 Duo CPU with a 32-bit Windows 7 system.
The parameters and their values used for the navigation filter were as follows:

. The initial state:X0=[−1·6075e11m,−1·5347e11m,−0·6627e11m, 1·3388e4m/s,
−1·5295e4 m/s, 0·6661e4 m/s]T.

. The initial state covariance: P0=diag(1012, 1012, 1012, 100, 100, 100).

. The process noise covariance: Q=diag(3×10−4, 3×10−4, 3×10−4, 1·5×10−7,
1·5×10−7, 1·5×10−7).

. The measurement noise covariance: R=diag(0·1, 0·1, 0·1, 0·1, 0·1, 0·1).

4.2. Propagation Results. The propagation results, which are calculated predic-
tions derived from the orbital dynamic model via a particular set of starting
conditions, are given below.

4.2.1. Gravitational Perturbations of a Third Body. The major forces acting on
the explorer during a Mars GA are shown in Figure 3, which shows that during the
simulation period, two major gravity accelerations were caused by Mars and the Sun,
with a magnitude of more than 10−2 m/s2 during the encounter with Mars. The
magnitudes of acceleration of Jupiter, Venus, Earth, Mercury, and Saturn are nearly
10−6 m/s2, whereas those of Neptune, Uranus, and Pluto are 10−10, 10−10, and
10−14 m/s2, respectively. Different relative positions between the explorer and the
planet or the position between the two perturbing planets will result in different
disturbed forces. However, the Sun and the assist planet are the major sources of
gravitational force and all the planets affect the explorer’s motion.
For a better evaluation of the influence of all celestial bodies in orbit, eight cases of

propagation results with different perturbing bodies are given in Figure 4 and Table 4.
Table 4 shows the position error and velocity error when the explorer encounters

Mars (3rd day–4th day, see Figure 2). The graphs and data in Figure 4 and Table 4
show that in the absence of all perturbation (see Case 0), the worst accuracy is
obtained. The propagation results are improved remarkably by taking more
perturbation into consideration, whereas the computation time increases gradually.

4.2.2. Standard Gravitational Parameter Uncertainty. The propagation simu-
lations are given in Figure 5 as logarithmic scales based on the data of the standard
Gravitational Parameter (GM) uncertainty in Table 2, in which the uncertainties of
Mars, Sun, and Jupiter are taken into account. When the position error or velocity
error equals 0, no curve is shown.

Table 3. Characteristics of the sensors.

Characteristics Value

Focal length, mm 2013·4
Field of view, mrad 10×10
Resolution, μrad/pixel 10
CCD format, pixels 1024×1024
Pixel size, μm 21
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Figure 5 indicates that all position and velocity errors increase with GM
uncertainty, and with the elapse of time, the propagation error accumulates and
rises gradually. Particularly, during the encounter with Mars (3rd day–4th day, see
Figure 2), the error increases sharply, but after the 5th day, the error growth is slight.
In addition, the Mars GM uncertainty leads to the greatest error, whereas the Jupiter
GM uncertainty produces less error compared with the GM uncertainties of Mars and
the Sun. The simulations of other planets can be performed in the same way. However,
considering the long distance or small GM uncertainty of the other planets, their
errors would be neglected.
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4.2.3. Ephemerides. Table 1 shows that the planetary ephemeris error of JPL’s
DE421 is from 200m to 10 km. To draw a universal conclusion for all interplanetary
GA missions, from 0 km to 10 km errors in the semi-major axis of the orbit of Mars
are considered in this simulation. In addition, all ephemeris error sources have been
considered, including the semi-major axis, eccentricity, inclination, right ascension
of the ascending, the argument of periapsis, and the true anomaly errors. The
propagation and navigation results caused by other ephemerides error sources are
similar to that of semi-major axis error, so only the results caused by semi-major axis
error are presented in the paper. The position and velocity propagation errors caused
by the different ephemeris uncertainties are shown in Figure 6.
As illustrated in Figure 6, the position and velocity propagation errors increase with

the ephemeris error. The largest semi-major axis error is 10 km, and the corresponding
position error reaches a peak (almost 106 m) when the simulation ends. When the
semi-major error axis is 2 km, the corresponding position error of the 7th day is almost
105 m. The result with ephemeris errors in other classic orbit elements is similar to that
of the semi-major axis. Therefore, compared with the other impact factors, the
ephemeris errors could be inferred to strongly affect the accuracy of force model,
especially in the period of planet approach.

Table 4. Performance comparisons of different perturbing planets.

Case
number Major force Position error (m)

Velocity error
(ms−1)

Simulation time cost
value (s)

0 Sun 1·087272e+007 2·453782e+003 45·413223
1 Case0+Mars 5·155304e+003 9·104742e−001 50·655603
2 Case1+Jupiter 2·606430e+003 6·692231e−001 57·862132
3 Case2+Venus 7·972034e+002 1·588130e−001 68·083901
4 Case3+Earth 4·005402e+002 1·464112e−001 80·957755
5 Case4+Mercury 3·246273e+002 9·340365e−002 90·700999
6 Case5+Saturn 4·796804e+000 1·207218e−003 102·047860
7 Case6+Neptune 3·440335e+000 8·134789e−004 109·072123

Figure 5. Propagation results with GM uncertainty.
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4.2.4. Numerical Integrator. Figure 7 shows the position and velocity errors of
the RK4 algorithms and the RKF7th8th algorithms comparing with reference
trajectory. Both the RK4 and RKF7th8th integration step size are fixed to 60 s. The
propagation results in Figure 7 show that the accuracy of RK4 and RK7th8th is close
during the three days prior to encounter; however, after the explorer’s encounter with
Mars, the propagation errors of RK4 and RK7th8th rose dramatically, and then
the error levels off. The propagation errors of RK4 reached 102 m in position and
10−3 m/s in velocity, whereas those of RK7th8th reached 10−1m in position and
10−6 m/s in velocity.
Table 5 presents the simulation details. RKF78 can produce less error in a fixed

step. However, RKF78 entails longer computation time than RK4. The simulation
results agree with the theoretical conclusion in Section 3. Therefore, considering
memory storage and implementation simplicity, the RK4 integrator may be preferred
because of the lower cost of computation time and acceptable accuracy.
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0 1 2 3 4 5 6 7

10-2 10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

101

100

10-1

10-2

10-3

10-4

10-5

Propagation Result

Time/day Time/day

P
os

it
io

n 
er

ro
r/

m

 
RKF78
RK4

0 1 2 3 4 5 6 7

Propagation Result
V

el
oc

it
y 

er
ro

r/
(m

/s
)

 

 
RKF78
RK4

(a) Position Error (b) Velocity Error

Figure 7. Performance comparisons between RK4 and RKF78.

540 XIN MA AND OTHERS VOL. 65

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0373463312000100
Downloaded from https:/www.cambridge.org/core. IP address: 195.77.228.228, on 13 Jul 2017 at 07:10:12, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0373463312000100
https:/www.cambridge.org/core


4.2.5. Integration Step Size. The propagation results with different integration
step sizes are shown in Figure 8 and Table 6. Similar to all propagation simulations
presented, when time elapses, the position and velocity errors caused by the
integration step size rises gradually, and with the decrease of the distance between
the explorer and Mars, the position and velocity errors rise suddenly. Particularly
from Figure 8 and Table 6, as the integration step sizes grow, the error increases
steadily. Additionally, the theoretical value of time cost and the simulation value of
time cost are given in Table 6, and the time costs drop rapidly with the increases in step
size.
As shown in Figure 8 and Table 6, the integration step size could be inferred as a

crucial factor affecting the orbital model accuracy, which is due to the acceleration
error caused by the step size. During the first three days and the last three days, the
error remained at a certain value because the acceleration of all celestial bodies is
stable (see Figure 3). When the explorer encountered Mars, the error caused by the
step size soared steeply, and the largest step size produced the least accurate result,
which is explained by the reason that in one integration step, acceleration is considered
constant. After integrating twice, the acceleration produces velocity and position;
however, acceleration is diverse in one step. The approximated error in the step leads
to the accumulation of position and velocity errors. Although an intensive step leads
to satisfied accuracy, more time is consumed obtaining all data needed in every step
(i.e., planet ephemerides). In addition, the time cost is inversely proportional to the
theoretical step size (Table 6). However, the simulation values of time cost do not
completely accord with the theoretical ones, because the times for loading necessary
data and initialization in every simulation with different step sizes is nearly constant.

Table 5. Performance comparisons between RK4 and RKF78.

Algorithms Position error (m) Velocity error (m s−1) Simulation time cost value (s)

RK4 0·128726 2·549317×10−4 6·369047
RKF78 0·003601 1·089446×10−6 7·474397
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Figure 8. Accuracy comparisons of different integration step size.
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Therefore, the integration step size plays an important role on both the accuracy and
the real-time performance.

4.3. Navigation Results. The results derived from the navigation filter decreased
the influence caused by the process and measurement noise. As a consequence, the
navigation results are explicit references for evaluating the performance of a
navigation system. The navigation results are given in Sections 4.3.1 to 4.3.4.

4.3.1. Navigation Results with Different Third Body Perturbations. The naviga-
tion results with different third body perturbations are shown in Figure 9 and Table 7.
The navigation result with different third-body perturbations differs slightly.
Navigation errors converge gradually with the decreasing distance between explorer
and Mars, and reach the lowest point between July 3 and July 4 (the encounter with
Mars). After the 4th day, the error grows slightly. Clearly, the case considering all
planets yields the highest accuracy and consumes the most computation time.

Table 6. Performance comparisons of different integration step size.

Step
size

Position error
(m)

Velocity error
(m s−1)

Theoretical value of
time cost

Simulation value of time
cost (s)

1 9·155273e−005 2·292306e−010 n 41·334434
4 7·220524e−003 2·297261e−006 n/4 13·275956
7 7·237381e−003 2·439863e−006 n/7 10·809971
10 7·825081e−003 2·737353e−006 n/10 8·964385
40 2·817732e−002 5·216840e−005 n/40 6·673532
70 2·342405e−001 4·720455e−004 n/70 6·326010
100 9·025345e−001 1·991898e−003 n/100 6·183436
200 1·637068e+001 5·962142e−002 n/200 6·025875
300 1·449502e+002 7·398184e−001 n/300 5·973296
400 6·707980e+002 3·453840e+000 n/400 5·914943
500 2·143705e+003 1·013625e+001 n/500 5·900985
600 4·584270e+003 2·130379e+001 n/600 5·897731
700 9·548769e+003 3·791259e+001 n/700 5·884355
800 1·651782e+004 5·956914e+001 n/800 5·880836
1000 3·686749e+004 1·152234e+002 n/1000 5·880262
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Figure 9. Accuracy comparisons of different third body perturbations.
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Figure 9 and Table 7 illustrate that taking all planets into consideration, the
accuracy is improved dramatically, and the computation cost is almost the same as
that of the others. Therefore, the planet perturbation influence cannot be neglected.

4.3.2. Navigation Results with Gravitational Parameter Uncertainty. Figure 10
and Table 8 provide the navigation results with gravitational parameter uncertainties.
In this simulation, only the gravitational parameter uncertainty of Mars is considered.
Two different simulation results are illustrated. One is the simulation without the GM
uncertainty of Mars. The other’s GM uncertainty of Mars is 0·1 km3/s2.
As shown in Figure 10, the two simulation results can hardly be differentiated.

However, Table 8 specifically presents the accuracy and computation time of the
simulation. Table 8 suggests that the GM uncertainty of Mars leads to tiny errors both
in the position and velocity, and the simulation time is nearly the same. From
Figure 5, the influence of the GM uncertainty of other planets can be inferred to
hardly exceed that of Mars. Hence, in most of the cases the slight effect of GM
uncertainty on navigation performance can be neglected.

4.3.3. Navigation Results with Different Ephemeris Error. The error in the semi-
major axis of the planet orbit is assumed to be 10 km. The navigation result with
ephemeris errors using RK4 integrator is shown in Figure 11. From the graphs and
data, a huge velocity error is produced during the Mars approach. As shown in
Figure 11, the planet ephemeris error could have a deep impact on the navigation
performance, and cannot be decreased by the filter algorithm.

4.3.4. Navigation Results with Different Integration Step Size. In this simulation,
the filter period and measurement of sample interval is assumed to equal the
integration step size. The navigation results with integration step size of 6, 60, and

Table 7. Performance comparisons of different third body perturbations.

Third body Position error (m) Velocity error (m s−1) Simulation time cost value (s)

Mars 374·213947 0·004852 87·610905
Mars Jupiter 464·890500 0·004934 87·239934
All Planets 56·718660 0·000576 88·577538
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Figure 10. Accuracy comparisons of different Mars GM uncertainty.
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600 s are provided in Figure 12, and the detailed results and the theoretical value of
time cost and the simulation value of time cost are given in Table 9. As shown in
Figure 12 and Table 9, the estimation error is highly dependent on the selected
integration step size. The accuracy increases when the steps are intensive, whereas a
small step size requires a larger simulation time which is verified by the inverse
proportion relationship between the step size and time cost in theory (Table 9). When
the integration step size is selected as 600 s (see red line in Figure 12), the filter is not
able to estimate the state properly. Additionally, the navigation error rises suddenly
during the encounter.
The increase of error in Figure 12 is most likely attributable to the giant acceleration

error caused by the step. Thus, to promote efficiency, the whole simulation can include
different integration step sizes. During the encounter period, the integration step size
might be sufficiently small to track the change of acceleration.

4.4. Summary and Case Study. In order to obtain realistic results and provide
useful information for space application, a specific Mars-assist explorer case is studied
and analysed by summarizing all the results above.
The navigation accuracy and time requirements in that case are shown in Table 10,

and the explorer is supposed to have used an ERC32 processor operated at 30MHz
clock rate with a performance of 60MIPS (Wang, 2007).
In this case it is assumed that 25% of the processor power is used for orbit

determination, 25% is used for attitude determination, the other 50% is used for
redundancy. According to the proportionate relationships of the clock rate between
the simulation processor and on-board processor, the simulation value of time cost
can be transformed to the time cost by the ERC32 processor. Therefore, in that case
the simulation time is not a strict restriction.

Table 8. Performance comparisons of different Mars GM uncertainty.

Navigation mode Position error (m) Velocity error (m s−1)

0 56·718660 0·000576
0·1 80·854566 0·000676
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Figure 11. Accuracy comparisons of different ephemeris error.
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Assuming that the filter period equals measurement sample interval (60 s), Sun and
Mars perturbation in the solar system is suggested for consideration according to the
simulation results. In addition, RK4 with 60 s integration step size can be selected to
satisfy the mission requirements.

5. CONCLUSIONS. To meet the strict requirements of the navigation system
in a GA mission, the factors that mainly influence the dynamic equation are analysed
in the current paper by means of comparing the propagation results and the
navigation results. Several conclusions can be drawn from the results:

. The propagation results imply that the selection numerical integrator and the
standard gravitational parameter uncertainty have a slight influence on the
accuracy performance, whereas the integration step size is the dominant impact
factor on the real-time performance.
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Table 10. Accuracy and time requirements for Mars-assist Mission.

Performance Threshold

Position 10 km
Time cost in one navigation period ,=the filter sampling period

Table 9. Performance comparisons of different integration step size.

Integration step
size (s)

Position error
(m)

Velocity error
(m s−1)

Theoretical value of
time cost

Simulation value of
time cost (s)

6 16·010493 0·000246 n 441·423737
60 52·350940 0·000591 n/10 44·159647
600 – – n/100 8·942634
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. The navigation results indicate that the filter algorithm is able to decrease
the majority of errors. However, the inaccuracy and divergence error caused by
ephemeris uncertainty is hardly decreased. Additionally, because of the rapid
change of acceleration during the encounter phase, the integration step size is
another main factor affecting navigation accuracy, whereas the integration
step size is the dominant impact factor on the real-time performance as the
propagation results.

. The specific Mars-assist explorer case study using the ERC32 processor shows
that the simulation time is not a strict restriction. Therefore, Sun and Mars
perturbation in the solar system is suggested for consideration and RK4 with 60 s
integration step size can be selected to satisfy the mission requirements.

The conclusions drawn in the present paper help determine the actual capabilities of
GA mission navigation system, which is not only beneficial to the GA mission, but to
the explorer’s encounter with a planet as well.
Future investigation would set up a hardware-in-loop real-time environment to

verify the navigation system performance.
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APPENDIX A NOMENCLATURE

r= the heliocentric Cartesian position vector of the explorer.
v= the heliocentric Cartesian velocity vector of the explorer.
(x, y, z)= the position vector of the celestial body in inertial system.
(vx,vy,vz)= the velocity vector of the celestial body in inertial system.
μs= the gravitational constant of the Sun.
N= the number of perturbing planets.
aj= acceleration caused by non-spherical gravity of assist planet.
ap= acceleration caused by thrusters impulse during manoeuvres.
as= acceleration caused by radiation pressure.
a0= acceleration caused by other factor.
X= the state vector.
g= dynamic model function.
w= process noise.
Z= the measurement.
h= measurement model function.
v= measurement noise.
(p, l)= pixel and line of the celestial body centre.
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K= scales, rotation of the pixel and line axes.
f= the sensor focal length.
(x2d, y2d)= the coordinates of the celestial body centre in the sensor 2-

dimensional plane system.
(p0, l0)= the pixel and line coordinates of the optical axis.
(xs, ys, zs)= the position vector of celestial body in sensor system.
(xi, yi, zi)= the vector of the celestial body in inertial system.
Abi= the transform matrix from the inertial system to the explorer body

system, derived via attitude information.
Asb= the transform matrix from explorer body system to sensor system.
n= the reference time cost.
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