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To eliminate the impact of the Doppler effects caused by the motion of the Mars explorer,
a novel X-ray pulsar navigation method based on a closed-loop filter is proposed. In the
pulsar signal observation period, the Doppler velocity predicted by the orbit dynamic model
and the prior information is utilised to compensate the X-ray photon time-of-arrival (TOA).
However, because of the error in prior information, there is a bias caused by the Doppler
compensation in the pulse time-of-arrival. The pulse TOA bias and the Mars explorer’s state
estimation error are correlated, which results in the decline of the Kalman filter performance.
To deal with this problem, we build the TOA measurement model with respect to the state
estimation error, and utilise the closed-loop extended Kalman filter (EKF) as the navigation
filter, where the predicted state error is adopted as the state estimation. The simulation results
demonstrate the feasibility, real-timeliness and effectiveness of the proposed navigation
method. The navigation method based on the closed-loop EKF using the measurement model
with the Doppler effects is more accurate than the traditional one.
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1. INTRODUCTION. Currently, ground stations will support Mars explorer
orbit determination. This navigation method is subject to navigation accuracy, real-
timeliness, reliability and spreadability. It cannot fulfil the requirement of deep space
exploration for high-accuracy and real-time navigation. Consequently autonomous
navigation systems (Xiong et al., 2013), which need not communicate with ground
stations, are highly attractive.
Traditional celestial navigation (Ning et al., 2011; 2012) is a commonly used

autonomous navigation method, whose measurement is the angle subtended at the
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explorer between the line of sight to the star and near celestial body. Its position
accuracy declines with the increase of the distance between the explorer and the near
celestial body. The distance between the Mars explorer and the near celestial body is
so long that the positioning accuracy of this navigation method is very low in transfer
orbit. Thus, this method is not suitable for the transfer orbit of deep space exploration.
Asteroid-based navigation methods (Zhang et al., 2009; Xu et al., 2007) acquire
navigation information by observing an asteroid when the explorer approaches the
asteroid, but cannot obtain navigation information when the distance between
the explorer and asteroid is very large. Therefore this method realizes high-accuracy
positioning determination only for a small fraction of the whole transfer orbit.
X-ray pulsar navigation is a novel navigation method for deep space exploration.

X-ray pulsars are rapidly rotating neutron stars, which can generate X-ray pulsed
radiation. X-ray radiation signals can be collected by X-ray sensors placed on the
explorer. After a period of observation usually lasting for several minutes, the stable
X-ray pulse profile is acquired through the epoch folding (EF) procedure (Emadzadeh
and Speyer, 2011a). A pulse time-of-arrival (TOA) can be obtained by comparing the
observed pulse profile with the standard one (Liu et al., 2010; 2012). Since TOA
accuracy is unrelated to the explorer’s position, this navigation method can provide
positioning information for the whole transfer orbit.
Many studies of X-ray pulsar navigation have assumed that the frequency of pulsar

signals is known (Li and Ke, 2011; Emadzadeh and Speyer, 2011b; Rinauro et al.,
2013), which is an important parameter in the epoch folding procedure. However, the
Doppler effects caused by the motion of the explorer result in the distortion of
integrated pulse profile of an X-ray pulsar. Consequently, the pulse TOA accuracy
declines. As we know, the pulse TOA accuracy affects the position determination
accuracy. Conversely, the distortion of an integrated pulse profile reflects the Doppler
velocity. Thus, many scholars have estimated the explorer’s velocity based on the pulse
profile distortion. Golshan and Sheikh (2008) utilized the maximum-likelihood (ML)
estimation method to determine the position and velocity. And the accuracy of the
ML method approaches the Cramer-Rao lower bound (CRLB) (Ashby and Golshan,
2008). Zhang et al. (2011) gave the conception of the profile entropy and based on this,
a phase and frequency estimation method for X-ray pulsar has been proposed.
Fei et al. (2011a; 2011b) divided pulsar signals into two parts, taking their similarity
as the objective function, and estimated the Doppler velocity by minimizing this
objective function. Xie et al. (2012) defined a profile feature function to measure the
integrated pulse profile distortion. According to the relationship between the function
value and Doppler velocity, the Doppler velocity has been recognised by a search
method. These Doppler velocity estimation methods’ velocity accuracies are also high.
The strategy of those methods is to estimate the spacecraft velocity by means of

minimizing the distortion of the pulse profile. In a pulsar observation period, pulsar
photons are collected by an X-ray sensor and simultaneously folded based on pulse
period. At this time, the pulsar navigation performance will not be affected when the
runtime of the EF procedure is less than a pulsar observation period. But after a pulsar
observation, themeasurements including the pulse TOA and theDoppler velocity must
be acquired quickly. Unfortunately, those Doppler velocity estimation methods are
executed after the pulsar observation. What is worse, they have a high computational
cost. The reason is that in those methods, a large number of pulsar signals (in the order
of 106*107) are folded with different pulse periods, even the runtime for an EF
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procedure with one pulse period is too high for the pulsar navigation system. From the
above analysis, we can see that multiple EF procedures must be avoided.
In this paper, to eliminate the Doppler effects with a small computational cost,

we develop a novel X-ray pulsar navigation system for the Mars explorer resistant
against Doppler effects, which avoids multiple EF procedures. In the pulsar signal
observation period, we utilise the prior information to compensate for the Doppler
effects. However, an error inevitably exists in the prior information, which leads to the
pulse TOA bias that arises from the Doppler compensation. It can be found that there
is a correlation between the pulsar navigation measurement bias and the state
estimation error. Based on this, a novel TOA measurement model is built with respect
to the state estimation error. We develop a closed-loop extended Kalman filter (EKF)
using this novel TOA model, which is robust to the measurement bias caused by the
Doppler compensation.
This paper is organized into six sections. After the introduction, the orbit dynamic

model for the Mars explorer and pulsar signal Doppler compensation method are
outlined in Section 2. The novel X-ray pulsar navigation measurement model is in
Section 3. The closed-loop EKF using the measurement model with the Doppler
effects (closed-loop EKF-MMDE) is described in Section 4. The simulation results in
Section 5 demonstrate the real-timeliness and accuracy of the presented method and
conclusions are drawn in Section 6.

2. PULSAR SIGNAL DOPPLER COMPENSATION. In order to
illustrate, we define the TOA of an individual pulse as the sub-TOA, while the TOA
obtained from the pulse integrated profile is defined as the pulse TOA.
To reduce the Doppler effects caused by the motion of a Mars explorer, the

position, velocity and acceleration estimations obtained from the orbit dynamic model
and prior knowledge can be utilised to compensate individual photon TOA from an
X-ray pulsar. However an error inevitably exists in the prior information. Therefore
there is a bias in the TOA measurement after the Doppler compensation.
In this section, we analyse the orbit dynamic model for the Mars explorer, and build

the state predicted error model. The X-ray pulsar photon EF procedure based on
Doppler compensation is then given. Finally, we show the effect of Doppler
compensation on pulse TOA, and build the pulse TOA measurement bias model
with respect to the Mars explorer’s state estimation error.

2.1. The analysis of orbit dynamic model for Mars explorer. The Sun-centred
inertial Cartesian coordinate system (J2000.0) is selected. The orbit dynamic model
for the Mars explorer is given as:

ẋ = vx
ẏ = vy
ż = vz

v̇x = −μs
x
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Equation (1) can be rewritten in the general state equation as

Ẋ(t) = f (X, t) + ω(t) (2)
where the state vector X=[x, y, z, vx, vy, vz]

T. r=[x, y, z] and v=⌊vx, vy, vz⌋
are the Mars explorer position and velocity vectors, respectively. Ẋ(t) is the
derivative of X. [x1, y1, z1] and [x2, y2, z2] are the position vectors of Mars
and the Earth, respectively. μs, μm, μe are the gravitational constants of
the Sun, Mars and Earth respectively, and their values are 1·327×1011 km3/s2,

3·986×105 km3/s2, 4·2828×104 km3/s2, respectively. r ps =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
, r pm =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x− x1)2 + (y− y1)2 + (z− z1)2
p

, r pe =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x− x2)2 + (y− y2)2 + (z− z2)2

p
are the

distances from the Mars explorer to the Sun centre, the Mars centre and the Earth

centre, respectively. rsm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 + y21 + z21

q
, rse =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 + y22 + z22

q
are the distances

from the Sun centre to the Mars centre and the Earth centre respectively. ω=[0, 0, 0,
ΔFx, ΔFy, ΔFz]

T, where ΔFx, ΔFy, ΔFz are the perturbation force considering sun-press
and other planets.
We can obtain the discrete form of Equation (2) as:

Xk = Xk−1 + f (Xk−1, k − 1)T + A(Xk)f (Xk−1, k − 1)T
2

2
+ ωk−1 (3)

where

A(Xk) = ∂f (X)
∂X

����
X=Xk

= [03×3, I3×3; S(Xk), 03×3] (4)

Sk = ∂v̇
∂r

����
r=rk

(5)

The corresponding state predicted model is as follows:

X̃k = X̃k−1 + f (X̃k−1, k − 1)T + A(X̃k)f (X̃k−1, k − 1)T
2

2
+ ωk−1 (6)

According to Equations (3) and (6), we can get the corresponding predicted error
model as:

δXk = δXk−1 + A(X̃k)δXk−1T = ΦkδXk−1 (7)
where

δXk = Xk − X̃k (8)
Φk = I6×6 + A(X̃k) (9)

2.2. Epoch folding method based on Doppler compensation. Since the pulsar
signals are very weak, the EF method is commonly used to enhance the signal to noise
ratio (SNR) of the pulse profile. The EF method (Emadzadeh and Speyer, 2011a;
Sheikh et al., 2006) is as follows:

(1) The X-ray sensor records the time-of-arrival of each individual X-ray photon
with respect to the system clock. During the total observation period, a large
number of photons, N, will have their arrival times recorded.
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(2) This set of photons is then folded at the predicted pulse period based on the
known timing model of the pulsar. A binned pulse profile is then constructed by
dividing the pulse phase into M equal bins and dropping each of the N photons
into the appropriate phase bin.

After the EF procedure, converting time to phase of the pulse period, the TOA is then
determined by measuring the phase offset of the observed profile with respect to the
high SNR standard profile template. However, due to the motion of the Mars
explorer, the pulsar signals TOA is subject to Doppler effects, so we must compensate
for Doppler effects.
To reduce the computation load, we compensate the TOA of each X-ray photon

with the pulse base. In order to illustrate conveniently, we define the TOA of
individual pulse as sub-TOA, while the TOA obtained from the pulse integrated
profile is defined as pulse TOA.
Suppose that the ith pulse period is Pi, the number of pulses in a pulsar observation

period isNp, rend is defined as the explorer’s position at the end of observation period, n
j

is the line-of-sight direction of the jth pulsar, which may be considered constant
throughout the solar system since the pulsars are so distant from the solar system. pend is
defined as the plane which passes through rend and is perpendicular to nj, the TOA of
mth X-ray photon in the ith pulse period at pend and the explorer are τm

i and λm
i ,

respectively. Figure 1 presents the basic principle of pulsar signal Doppler com-
pensation. As in the kth pulsar period, the Mars explorer moves (nj)T vk Pk in the line-
of-sight direction of the jth pulsar, the distance from the position of theMars explorer at

the ith pulse period to pend is
PNp

k=i+1
((nj)TvkPk). Thus, the relationship of τmi and λm

i can be
expressed as:

τim = λim −
XNp

k=i+1

(nj)TvkPk

c

� �
(10)

where vi is the Mars explorer velocity in the ith pulse period. c is the speed of light.
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Figure 1. X-ray pulsar signal Doppler compensation.
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As the pulse profile of a pulse period consists of the photons in this pulse period, the
compensation adopted by the pulse sub-TOA equals to that of X-ray photon in this
pulse period. Suppose that the ith pulse sub-TOAs at pend and the explorer are Ti and
ti, respectively. The relationship of Ti and ti is

Ti = ti −
XNp

k=i+1

(nj)TvkPk

c

� �
(11)

Using the orbit dynamic model, the velocity estimation and position estimation at
the beginning of the pulsar observation period, we can predict the Mars explorer’s
velocity in the ith pulse period, v̂i, and compensate the pulse sub-time-of-arrival with
this predicted velocity. The compensated TOA of mth X-ray photon in the ith pulse
period at pend is τ̂im:

τ̂im = λim −
XNp

k=i+1

(nj)Tv̂kPk

c

� �
(12)

Correspondingly, the ith pulse compensated sub-TOA at pend, T̂ i can be expressed as:

T̂ i = ti −
XNp

k=i+1

(nj)Tv̂kPk

c

� �
(13)

The EF method based on Doppler compensation is summarised as follows:

(1) The sensor records the time-of-arrival of each individual X-ray photon.
(2) The time of arrival of each individual X-ray photon is corrected by

Equation (12). v̂i in Equation (12) can be calculated by the fourth-order
Runge-Kutta method and the transfer orbit dynamic model.

(3) This set of photons is then folded at the predicted pulse period based on the
known timing model of the pulsar. A binned pulse profile is then constructed by
dividing the pulse phase into M equal bins and dropping each of the N photons
into the appropriate phase bin.

2.3. TOA bias model. In the EF method based on Doppler compensation, the
velocity prediction error affects sub-TOA accuracy. Next, we analyse this effect.
Suppose that the velocity error in the ith pulse period of the kth pulsar observation

period, Δvi, is

Δvi = vi − v̂i ≈ [03×3 I3×3](I6×6 + A(X̃k−1) · i · P0)δXk−1

= [Sk−1 · i · P0, I3×3]δXk−1 (14)
Then, the pulse sub-TOA compensation error of the ith pulse period, ΔT̂ i, is:

ΔTi =Ti − T̂ i

=−
XNp

k=i+1

(nj)TΔvk
c

P0

=− P0

c
(nj)T Sk−1 ·Np(Np + 1) − i(i + 1)

2
· P0, (Np − i) I 3×3

� �
δXk−1

(15)
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As the pulsar profile is integrated with all pulses in the whole pulsar signal
observation period, the pulse TOA estimation bias equals the mean of pulse time-
of-arrival compensation error of all periods. The pulse TOA bias can be expressed as:

βjk = 1
Np

XNp

i=1

ΔT̂ i = − (nj)T
c

T2

3
Sk−1,

T
2
I3×3

� �
δXk−1 (16)

where the observation period T=NpP0. We can see that this bias is correlated with the
velocity estimation error Δv.
Therefore Equation (16) is the pulse TOA measurement bias model with respect to

the state estimation error.

3. X-RAY PULSAR NAVIGATION MEASUREMENT. An X-ray
pulsar measurement is the difference between the pulse TOAs observed by the X-ray
sensor at the Mars explorer and predicted by the pulse-timing model at SSB (solar
system barycentre) (Liu et al., 2010; 2012). tj and tb

j are the pulse TOAs of the jth
pulsar at the Mars explorer and at the SSB respectively. nj is the line-of-sight direction
vector of the jth pulsar, which may be considered constant throughout the solar system
since the pulsars are so distant from the Solar system. r is the position vector of the
Mars explorer with respect to the SSB. c is the speed of light. The offset tb

j− tj reflects
r’s projection on nj. The offset to the first order is

t jb − t j = 1
c
(nj)Tr (17)

Considering the relativistic effects, geometric effects and TOA measurement bias,
the time transfer model can be expressed as:

tjb − (tj − βj) = 1
c
(nj)Tr+ 1

2cDj
0

−|r|2 + ((nj)Tr)2 − 2bTr+ 2(bTr)((nj)Tr)� �

+ 2μSun
c3

ln
(nj)Tr+ |r|
(nj)Tb+ |b| + 1

����
���� (18)

where D0
j is the range from the jth pulsar to the SSB, b is the position of the SSB

relative to the Sun, μSun is the gravitational constant of the Sun. The second and
third terms on the right-hand side of Equation (18) are referred to as Roemer
delay. The fourth term is the Shapiro delay effect. Equation (18) can be also
represented as:

c(tjb − tj) = (nj)Tr+ 1

2Dj
0

[−|r|2 + ((nj)Tr)2 − 2bTr+ 2(bTr)((nj)Tr)]

+ 2μSun
c2

ln
(nj)Tr+ |r|
(nj)Tb+ |b| + 1

����
����− cβj (19)

Suppose that the TOA measurement Yk=[c(tb
1− t1), c(tb

2− t2), . . ., c(tb
num− tnum)]

and measurement noise ξ=[ς1, ς2, . . ., ςnum]T, where c(tb
j− tj) and ςj are the

measurement and noise of the jth pulsar respectively, num is the number of the
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adopted pulsars. The measurement model can be presented as:

Yk = h(Xk, k) + Bk + ξk (20)
where the TOA bias matrix Bk can be expressed as:

Bk =[−cβ1k,−cβ2k, . . . ,−cβnumk ] = nT
T2

3
Sk,

T
2
I

� �
δXk−1

= nT
5T2

6
Sk,

T
2
I + T3

3
Sk

� �
δXk−1 (21)

where

n = [n1, n2, . . . , nnum] (22)
h(Xk, k)= [h1(Xk, k), h

2(Xk, k), . . . h
num(Xk, k)]

T, hj(Xk, k) is the measurement equation
of the jth pulsar, and can be expressed as:

hj(Xk, k) = (nj)Tr+ 1

2Dj
0

[−|r|2 + ((nj)Tr)2 − 2bTr+ 2(bTr)((nj)Tr)]

+ 2μSun
c2

ln
(nj)Tr+ |r|
(nj)Tb+ |b| + 1

����
���� (23)

where j = 1, 2, . . ., num.
It is important to determine the pulse TOA with an accuracy that is determined by

the SNR of the profile and not by the time resolution. The method given by Taylor
(Xie et al., 2012) is independent of time resolution, where a pulse TOA is generated by
comparing an observed profile with high SNR standard template profile. The standard
variance σj of ςj can be calculated as follows (Sheikh et al., 2006):

σj = Wc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi[BX + FX (1− pf )]d + FXpf

p
2FX

ffiffiffiffiffiffiffiffi
AT

√
pf

(24)

where BX is the X-ray background radiation flux, FX is the radiation photon flux from
X-ray pulsar, pf is the ratio of the pulse radiation flux to the average radiation flux in a
pulse period, A is the area of the X-ray sensor, T is the pulsar signals observation
period,W is the width of the pulse, d is the ratio of the pulse width to the pulse period,
c is the speed of light.

4. CLOSED-LOOP EKF. Considering the fact that the TOA measurement is
related with the state error, we adopt the closed-loop EKF (Qiao et al., 2010), where
the state predicted error is utilised as the novel state estimation.
Suppose that we have a system given by

δXk = ΦkδXk−1 + ωk−1 (25)

δYk = HkδXk + δk (26)
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The error measurement considering the Doppler effects, δYk, can be expressed as:

δYk =Yk − h(X̃k, k)
= [n, 03×3]δXk + B + ξ

= nT I3×3 + 5T2

6
Sk−1,

T
2
I 3×3 + T3

3
Sk−1

� �
δXk + ξ

=HkδXk + ξ

(27)

where

Hk = nT I3×3 + 5T2

6
Sk−1,

T
2
I3×3 + T3

3
Sk−1

� �
(28)

When the spacecraft is in the transfer orbit, the value of S is very large. In this
condition, we can adopt the simplified measurement matrix as:

Hk = nT I 3×3,
T
2
I 3×3

� �
(29)

Equation (27) is the measurement model with the Doppler effects.
The principle of the closed-loop correction filter is shown in Figure 2. The equations

for the closed-loop extended Kalman filter are shown as:

P−
k = Φk−1P+

k−1Φ
T
k−1 +Qk−1 (30)

Kk = (P−
k H

T
k )(HkP−

k H
T
k + Rk)−1 (31)

δXk = KkδYk (32)
P+
k = P−

k − KkHkP−
k (33)

X+
k = X−

k + δXk (34)

5. SIMULATION RESULTS. In order to demonstrate the feasibility and
effectiveness of the proposed navigation system, we show the simulation results in this
section. The simulation conditions are shown as follows.
We adopt two orbits: (a) The orbit of the American Mars Pathfinder, which

launched on 4 December 1996 at 06:58:10·00 UT. The initial orbit elements of
the American Mars Pathfinder are shown in Table 1. The simulation time is from

 + 
- 

Output 
Position 
Velocity 

Correction 

Orbit dynamic model 

Pulsar navigation 
observation system Kalman filter

Figure 2. Principle of closed-loop correction.
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1 Mar 1997 00:00:00·00 UT to 2 Mar 1997 00:00:00·00 UT. (b) The orbit of the Mars
satellite, whose initial orbit elements are shown in Table 2. The simulation time is
10 days. The two orbits of the Mars explorer are simulated with the Satellite Tool Kit
(STK), which takes the perturbation effects into account.
The measurement noise standard covariance of the jth pulsar can be calculated as

Equation (24). The X-ray background radiation flux is assumed as 0·005 ph/cm2/s.
That value was chosen based on the empirical research done at the Naval Research
Laboratory (Dennis, 2005). The area of the X-ray sensor is 1 m2. The creation of a
catalogue of pulsars is most useful for deep space navigation. In this paper, three
commonly used pulsars, whose figures of merit are highest in all pulsars, are adopted,
and the parameters of those pulsars are shown as Table 3.
The other parameters of the filter are shown as Table 4. The experiments were

carried out on an Acer TravelMate 8572 TG Notebook with a CPU clock rate of
2·4 GHz and a memory of 2 GB.

Table 1. Initial orbital elements of the American Mars Pathfinder.

Orbital element Value

Semi-major Axis 193216365·381 km
Eccentricity 0·236386
Inclination 23·455°
Right Ascension of Ascending Node 0·258°
Argument of Periapsis 71·347°
True Anomaly 85·152°

Table 2. Initial orbital elements of the Mars satellite.

Orbital element Value

Semimajor Axis 6794 km
Eccentricity 0
Inclination 45°
Right Ascension of Ascending Node 0°
Argument of Periapsis 0°
True Anomaly 0°

Table 3. Parameters of pulsars.

Pulsar B0531+21 B1821–24 B1937+21

Right ascension angle/° 83·63 276·13 294·92
Declination angle/° 22·01 −24·87 21·58
D0/kpc 2·0 5·5 3·6
P/s 0·0334 0·00305 0·00156
W/s 1·7×10−3 5·5×10−5 2·1×10−5

Fx(ph/cm
2/s) 1·54 1·93×10−4 4·99×10−5

Pf/% 70 98 86
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5.1. Mars satellite obit. We investigate the performance of closed-loop EKF-
MMDE and the traditional closed-loop EKF. Figure 3 shows the performance
comparison of these two navigation methods using the same simulation conditions
described above. As the results in Figure 3 demonstrate, the two methods can
converge very well for a Mars probe orbit, and the closed-loop EKF-MMDE
performs considerably better. Table 5 shows the comparison between the traditional
closed-loop EKF and the closed-loop EKF-MMDE over 100 Montè-Carlo trials. It
can be seen that compared with the traditional closed-loop EKF, the closed-loop
EKF-MMDE shows 64% and 62% improvement for the Mars explorer’s position and
velocity, respectively. The closed-loop EKF-MMDE has an approximately 11%
increase in calculation time compared with the traditional one. For one step, the
computation time of closed-loop EKF-MMDE increases by 11·6 us. This value is
negligible compared with the filtering period of several hundred seconds. The reason is
that the closed-loop EKF-MMDE uses the TOA measurement model considering the
Doppler effects, and the computational load of the closed-loop EKF-MMDE is more
than that of the closed-loop EKF by only one matrix S computation and two matrix
accumulations. From these results, we can see that the closed-loop EKF-MMDE
improves the navigation performance obviously under the condition of the Doppler
effects.
Next, we investigate the impact of the X-ray sensor’s area on both the closed-loop

EKF-MMDE and the traditional closed-loop EKF. Figure 4 represents the
simulation results with different areas of sensor over 100 Montè-Carlo trials. We can

Table 4. Parameters of navigation filter.

Parameter Value

Number of X-ray sensors 1
Sampling period (the observation period) 1000 s
Initial state errors δX(0)= [6000m, 6000m, 6000m, 20 m/s, 20 m/s, 15m/s]
Initial estimation error covariance P(0) is selected at random
State process noise covariance Q=diag[q1

2, q1
2, q1

2, q2
2, q2

2, q2
2],

where q1=4 m q2=6×10−4 m/s for transfer orbit;
q1=20m q2=0·13m/s for satellite orbit.

(a) Posittion estimation error (b) Veelocity estimattion error

Figure 3. Estimation error of the two navigation methods.
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(aa) Position esttimation errorr (b) Velocity estimation error

Figure 4. Estimation error with different area of X-ray sensor.

Table 5. Comparison between the traditional closed-loop EKF and the closed-loop EKF-MMDE.

Filter
Position
error/m

Velocity
error/(m/s)

Total
Time(s)

Time for each
step(us)

closed-loop EKF 10291 4·156 0·095 109·8
closed-loop EKF-MMDE 3723 1·595 0·105 121·4

(a) Positioon estimation eerror (b) VVelocity estimmation error

Figure 5. Estimation error with different observation period.

(a) Posittion estimation error (b) Veelocity estimattion error

Figure 6. Estimation error of the two navigation methods.
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see that the performance of the two methods improves with enlarging the area of
X-ray sensor, and the closed-loop EKF-MMDE method outperforms the traditional
one with the same area. It is interesting to note that when the two methods reach the
same accuracy, the area adopted by the closed-loop EKF-MMDE-based navigation is
less than that of closed-loop EKF-based one. For instance, in order to reach 6000 m,
the closed-loop EKF-MMDE-based navigation requires three X-ray sensors with
3×4000 cm2 area, while the traditional closed-loop EKF-based method needs three
X-ray sensors with 3×13000 cm2. The novel closed-loop EKF-based navigation
method saves 3×9000 cm2 and decreases the cost and the weight of the Mars explorer
effectively.
Finally, we investigate the impact of the filtering period on both the novel closed-

loop EKF-MMDE and the traditional closed-loop EKF method. Figure 5 represents
the simulation results with different filtering periods over 100 Montè-Carlo trials. We
can see that the accuracy of the traditional closed-loop EKF declines with the increase
of filtering periods greatly, while the accuracy variation of closed-loop EKF-MMDE
is very small. The closed-loop EKF-MMDE method outperforms the traditional one
with the same observation period. The reason is that with the increase of observation
period, the TOA bias increases, the traditional closed-loop EKF cannot resist the
TOA bias, while the closed-loop EKF-MMDE is robust to the TOA bias.
When the X-ray sensor with small area is adopted, the number of received X-ray

photons per unit time decreases greatly. In order to obtain high SNR pulsar profile,
the pulsar signals observation period must be lengthened. Under this condition, the
closed-loop EKF-MMDE works very well, while the closed-loop EKF does not. In
brief, the closed-loop EKF-MMDE is well suited for small-area X-ray sensors.

5.2. Earth-Mars transfer obit. In this section, we investigate the performance of
the closed-loop EKF and the traditional EKF in the Earth-Mars transfer orbit. When
we choose Q as the state process noise covariance of the traditional EKF, the EKF
cannot converge very well. The reason is that the EKF performance is affected by the
correlated TOA measurement noise. Therefore, we should choose a larger Q. From
a lot of simulation results, we find that when a Q of 25 is adopted, the EKF can
converge very well and the estimation accuracy is high. Figure 6 shows the
performance comparison of these two navigation methods using the same simulation
conditions described above. As the results in Figure 6 demonstrate, the two methods
can converge very well, and the closed-loop EKF-MMDE performs considerably
better. Table 6 shows the comparison between the traditional EKF and the EKF-
MMDE over 100 Montè-Carlo trials. It can be seen that compared with the
traditional closed-loop EKF, the closed-loop EKF-MMDE shows 35% and 50%
improvement for the Mars explorer’s position and velocity, respectively. The closed-
loop EKF-MMDE has the same calculation time as the traditional closed-loop EKF.

Table 6. Comparison between the traditional EKF and the EKF-MMDE.

Filter
Position
error/m

Velocity
error/(m/s)

Total
Time(s)

Time for each
step(us)

Closed-loop EKF 359 0·0105 0·073 84·5
Closed-loop EKF-MMDE 269 0·0052 0·073 84·5
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The reason is that the closed-loop EKF-MMDE can deal with the influence of
Doppler effects very well via the improvement of measurement model. In the transfer
orbit, the simplified measurement model is adopted, which does not increase the
computational load.

6. CONCLUSION. In this paper, pulsar navigation for the Mars explorer
resistant against Doppler effects is proposed. In the pulsar signals observation period,
the Doppler velocity predicted by the orbit dynamic model and the prior information
is utilized to compensate the X-ray photon time-of-arrival. However, there is a bias
caused by the Doppler compensation in the TOA estimation, and the bias is correlated
with the state estimation error. To solve this problem, we build the TOA measurement
model with the Doppler effects, and utilise the closed-loop EKF-MMDE as the
navigation filter. Compared with the traditional closed-loop EKF, the closed-loop
EKF-MMDE clearly improves the navigation performance with a negligible
computational load.
This X-ray pulsar navigation system has the following virtues: (1) navigation is

completely autonomous; (2) it is able to resist the Doppler effects and has high
accuracy; (3) it realizes real-time Doppler compensation and state estimation; (4) it
works very well with a small-area X-ray sensor. Therefore, this pulsar navigation
system is suited for Mars exploration.
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