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The precise autonomous navigation for deep space exploration by combination of multi-source
observation data is a key issue for probe control and scientific applications. In this paper, the per-
formance of an integrated Optical Celestial Navigation (OCN) and X-ray Pulsars Autonomous
Navigation (XNAV) system is investigated for the orbit of Mars Pathfinder. Firstly, OCN and
XNAV single systems are realised by an Unscented Kalman Filter (UKF). Secondly, the inte-
grated system is simulated with a Federated Kalman Filter (FKF), which can do the information
fusion of the two subsystems of UKF and inherits the advantages of each subsystem. Thirdly,
the performance of our system is evaluated by analysing the relationship between observation
errors and navigation accuracy. The results of the simulation experiments show that the biases
between the nominal and our calculated orbit are within 5 km in all three axes under complex
error conditions. This accuracy is also better than current ground-based techniques.
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1. INTRODUCTION. One of the most important factors for deep space exploration
is the positioning and navigation ability of the artificial spacecraft (Jin et al., 2013; Jin
and Zhang, 2014). However, current deep space navigation methods strongly depend on
ground observations of radiometric tracking data, such as Very Long Baseline Interferom-
etry (VLBI) (Wei et al., 2016) and Unified S-Band (USB) (Bhaskaran, 2012). One of these
ground-tracking strategies is the Deep Space Network (DSN) of the United States, which
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has successfully completed most of the deep space missions’ navigational work. Neverthe-
less, with the complicated execution of the system, the errors grow with increasing distance
and the resulting real-time navigation and telecommunication problems are all disadvan-
tages of this network (Hemmati, 2006; Graven et al., 2008). Thus, numerous autonomous
navigation and integrated navigation methods are proposed to resolve the above problems.

New autonomous methods such as Optical Celestial Navigation (OCN) and X-ray Pul-
sars Navigation (XNAV) have been mostly focused on deep space navigation since the
1970s. OCN was initially tested and applied densely in low orbit satellite autonomous orbit
determination (Gounley et al., 1984; White et al., 1985), in which the orbit accuracy is from
several hundred metres to several kilometres. Recently, OCN techniques have been utilised
in deep space exploration missions, for example, Deep Space 1, Deep Impact, Mars Recon-
naissance Orbiter (MRO) and The Dawn (Soderblom et al., 2002; Hampton et al., 2005;
Graf et al., 2005; Mastrodemos et al., 2005; Sierks et al., 2011). The navigation accuracy
of OCN for these missions varies between several tens of kilometres and a few hundreds of
kilometres. An orbit uncertainty of this magnitude satisfies the requirement for stable navi-
gational and engineered trajectory determination, but cannot fulfil the accuracy demand of
scientific applications.

Downs (1974) first proposed the idea of using celestial X-ray sources for interplanetary
navigation. Chester and Butman (1981) utilised X-ray Pulsars for navigation simulation,
and an accuracy of around 150 kilometres can be achieved based on their theory. Recent
simulation results have shown that the navigation accuracy of this method could reach
within five kilometres (Sheikh et al., 2006; Becker et al., 2013; Deng et al., 2013). For
example, simulations using XNAV to determine spacecraft orbits around Mars show that
the accuracy of this method is within two kilometres (Wei et al., 2013). In addition, several
testing plans and XNAV navigation experiments have been done or will be done, including
Unconventional Stellar Aspect (USA), X-ray Source-based Navigation for Autonomous
Position Determination (XSNAPD), and the Station Explorer for X-ray Timing and Navi-
gation Technology (SEXTANT) (Hanson, 2006; Sheikh and Pines, 2006; Winternitz et al.,
2016). These experiments have all confirmed the feasibility of XNAV. In particular the
SEXTANT ground test experiments demonstrated that the accuracy of this system could
achieve an orbit accuracy of ten kilometres with current hardware configurations.

Currently, the accuracy of the time delay of VLBI is of a magnitude of nanoseconds,
which equals to range errors of about 4 km per Astronomical Unit (AU) (James et al.,
2009; Becker et al., 2013; Cao et al., 2010). The OCN used on deep space spacecraft for
autonomous navigation purposes has far poorer accuracy than the ground-based techniques.
At the same time, the signal intensity of the XNAV is so weak that the observations have
to be folded and integrated over several minutes to several tens of minutes according to the
flux of the X-ray Pulsars (Sheikh et al., 2006; Becker et al., 2013). Thus, the performance of
this system is not stable and the system would suffer collapse in some cases. Accordingly,
an integrated navigation system of OCN/XNAV would be a better choice for future deep
space navigation.

Many integrated system and filter designs of OCN/XNAV have been simulated to cal-
culate Earth satellite orbits and orbits circling around Mars (Wang et al., 2013; Rong et al.,
2016). The current simulated accuracy of XNAV or XNAV/OCN that achieved an error
magnitude of several kilometres is available, however, the techniques which achieved
hundred metres accuracy would generate hardware requirements that would currently be
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NO. 4 MARS CRUISE ORBIT DETERMINATION 721

difficult to fulfil according to the ground-testing experiments of SEXTANT. These simula-
tions are more concerned about either the performance of the Kalman filter or the design
of the filter. Most of the simulations make minor consideration of the influence of complex
errors on the performance of integrated OCN/XNAV.

In this paper, the OCN/XNAV system is realized and evaluated by simulation. The
spacecraft’s orbit accuracy is evaluated in many different conditions such as sensors’ point-
ing accuracy, the integration time of the XNAV, the delay errors and the clock errors. The
orbit uncertainty is studied and analysed to give an autonomous, stable and high accu-
racy orbit solution. The paper is organised as follows: the principle of the OCN/XNAV
integrated navigation system is presented in Section 2. A numerical experiment is demon-
strated in Section 3 to test the accuracy and robustness of the system. The relationship
between system parameters and the accuracy of the orbit is also discussed and analysed in
this section. Finally, conclusions are given in Section 4.

2. METHODS AND MODELS.
2.1. Dynamics model of the Mars spacecraft. Satellite Tool Kit (STK) software is

utilised to generate the nominal orbit, which has the same condition and orbit manoeu-
vre as the Mars Pathfinder spacecraft. It should be noted that all our accuracy evaluation
and observation simulation is based on this nominal orbit. Since our paper is focused on
evaluating the performance of the integrated OCN/XNAV navigation system, we use a
cyclo-restricted four-body model concerning the Sun, Mars, the Earth and the spacecraft
to build the dynamics model to simplify the problem. Thus, the accelerated speed a of the
spacecraft in the cruise phase can be expressed as:

a = −μs

r3
ps

rps − am − ae + ω (1)

where μs represents the heliocentric gravitational constant; rps represents the position and
velocity vectors of the spacecraft in the J2000 Heliocentric Inertial Coordinate System
(J2000HICS) that is defined by DE405; rps = [x y z ẋ ẏ ż]T, rps =

√
x2 + y2 + z2, a = ṙps.

The dot above the variable means its derivative; am and ae represent the gravitational attrac-
tion of Mars and the Earth to the spacecraft, respectively. ω is the accelerated speed noise.
The perturbative force of Mars and the Earth is expressed as:⎧⎪⎪⎨

⎪⎪⎩
am =

μm

r3
pm

rpm − μm

r3
sm

rsm

ae =
μe

r3
pe

rpe − μe

r3
se

rse

(2)

where, μm and μe represent Mars-centric and geocentric gravitational constants, rpm and
rpe represent the position and velocity of the spacecraft relative to Mars and Earth, rsm and
rse are Mars and Earth position and velocity vectors in J2000HICS which can be acquired
from DE405. rpm, rpe, rsm and rse are the distances of the above vectors which have similar
formulae to rps.

2.2. Algorithm of the integrated navigation system.
2.2.1. Numeric solution of the dynamic equation. In this paper, an Unscented Kalman

Filter (UKF) is utilised to conduct orbit calculation to avoid linearizing Equation (1), the
OCN observation equation and the XNAV observation equation.
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722 JIANDONG LIU AND OTHERS VOL. 70

Table 1. SLDA simulated in this paper.

Angles Sun-sensor-Sirius Sun-sensor-Earth Earth-sensor-Mars Sun-sensor-Mars

Name θ φ ϕ ψ

Table 2. Pointing accuracy of the celestial sensors.

Sensors Star Sensor Sun Sensor Earth Sensor Mars Sensor

High accuracy 1′′ 1′′ 0·001◦ 0·001◦
2′′ 3′′ 0·002◦ 0·002◦

Medium accuracy 3′′ 5′′ 0·003◦ 0·003◦
4′′ 6′′ 0·004◦ 0·004◦

Low accuracy 5′′ 7′′ 0·005◦ 0·005◦
6′′ 8′′ 0·005◦ 0·005◦

Equation (1) can be solved by numerical integration method. Therefore, we use Runge-
Kutta (RK) methods in terms of RK 7(8) to acquire the initial solution that can achieve
enough solution accuracy (Dormand and Prince, 1978). This solution also provides the
initial Sigma points (Section 2.2.4).

2.2.2. Measurement model of OCN. Particularly, our paper focuses on one of the
observational methods of OCN that is called Stellar Light Distance Angle (SLDA) because
this observation has been put into use in several deep space spacecraft navigations (Low-
man and Stauder, 2004). SLDA is the angle between two light rays of celestial bodies
observed from sensors such as navigation camera on board the spacecraft. We simulate
four angles that are illustrated in Table 1.

The simulation process is as follows: First, the SLDA can be deduced from the unit
direction vector of the stellar light as Equation (3) shows,

Zl = arccos(lp1 · lp2) + vl (3)

where Zl = [θ φ ϕ ψ]T is the observation vector, lp1 = [lpb lps lpe lps]T and lp2 =
[lps lpe lpm lpm]T are stellar unit direction vectors in which the subscripts p , b, s, e and
m represents the centre of the spacecraft, celestial body Sirius, the Sun, the Earth and Mars,
respectively. Accordingly, the unit vectors can be acquired from radius vectors. vl is the
noise vector of the equation. Specifically, these direction vectors are acquired from the
nominal orbit and DE405. Secondly, when the true SLDA observation is deduced from
Equation (3) (excluding random noise vl), some random errors are added to the true SLDA
based on the accuracy of sensors shown in Table 2 (Mastrodemos et al., 2005; Stastny and
Geller, 2008; Sun et al., 2016). The accuracy of the SLDA is evaluated by the square root
of sum of squares of two point accuracy.

2.2.3. Measurement model of XNAV. The main idea of XNAV is to obtain time delay
observation, which is between the Time Of Arrival (TOA) of the Pulsar’s signal to the
probe and the TOA of the signal to the origin of a (quasi) inertial space-time reference
system. The Solar System Barycenter (SSB) is highly recommended because many theories
and observations are based on the system. Nevertheless, the origin of the inertial reference
system in this paper is the heliocentre for the sake of convenient simulation. A prior model
(a pulse template) can predict the TOA to the origin of the inertial reference system (Sheikh
et al., 2007).
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NO. 4 MARS CRUISE ORBIT DETERMINATION 723

The time delay includes some corrections due to interstellar medium dispersion effect,
general relativity effect and on board clock uncertainties δtc which can be corrected by
prior models (Sheikh et al., 2006; Becker et al., 2013). The total time delay τ should be
written as:

τ =
1
c

n · rps + δtroemer + δtshapiro + δtc + v2 (4)

The first term of the right side in the equation is geometry time delay τg . c represents the
speed of light, n is the direction vector of the Pulsar signal, rsp is the position vector of the
probe, δtromer is the Roemer delay, δtshapiro is the Shapiro delay (Sheikh et al., 2007) and v2
represents observation random noise of XNAV. The Roemer delay1 and Shapiro delay is
written as the following reduced form:⎧⎪⎪⎨

⎪⎪⎩
δtreomer =

1
2cD0

[(n · rps)2 − r2
ps + 2(n · b)(n · rps) − 2(b · rps)]

δtreomer =
2μs

c3 ln
∣∣∣∣n · rps + n · b + ‖rps + b‖

n · b + b

∣∣∣∣
(5)

D0 is the initial position of Pulsars and b is the solar position vector in J2000 BCRS. We
use first order clock error model to simulate the performance of the atomic clock on board
the spacecraft:

δtc = a0 + a1(t − t0) (6)

a0 is the clock offset and a1 is the clock drift.
To simulate the XNAV observation, firstly, geometry time delay τg is deduced from

the first term of Equation (4) based on nominal orbit and DE405. In addition, the total
time delay is simulated from Equation (4) by adding the three model errors and noise. The
accuracy of X-ray Pulsars is evaluated based on the theory introduced by Becker et al.
(2013) and can be found in Wei et al. (2013).

2.2.4. The Kalman Filter. As illustrated as above, we use a UKF as the filter algorithm
to process the OCN and XNAV observation data. The Unscented Kalman Filter was utilised
to estimate nonlinear state in terms of Sigma Points (SP). In this paper, a symmetric sam-
pling method is adopted to generate SP and the standard UKF algorithm is described by
Wan and Van der Merwe (2000).

There are three kinds of parameter in terms of scale parameter κ , SP distribution param-
eter α and distribution function parameter υ that have influence on the performance of UKF
(Wan and Van der Merwe, 2000). We adopt υ = 2, κ = 0 and α = 0·1. Hundreds of exper-
iments have been done to determine these values. The experiments show that the value of
υ and κ have very slight influence on our UKF. However, the accuracy that the calculated
trajectory obtained varies depending on the values of α from 10−4 to 1. The closer the value
is to 1, the higher the accuracy that the calculated orbit can achieve (evaluated by the bias
between nominal orbit and our calculated orbit). The orbit accuracy no longer decreases or
increases drastically when α is around 0·1.

Our integrated navigation system is realised by a Federal Kalman Filter (FKF) which
was first introduced by Carlson (1990). The main idea of FKF is to obtain a global optimal

1 Actually, the Roemer Delay includes first two terms of right side of Equation (4). Because the first term is
utilised to calculate the orbit we regard the second term as a systematic error, which would have influence on the
integrated navigation system.
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724 JIANDONG LIU AND OTHERS VOL. 70

Figure 1. A simplified flow chart of Federal Kalman Filter.

Table 3. The timeline of orbit manoeuvrings of Mars Pathfinder.

The corrections 1st 2nd 3rd 4th 5th

Time 97-01-09 97-02-03 97-05-06 97-06-25 97-07-03(4)

solution via merging solutions of subsystems according to a weighted principle and, in
turn, the merged solution can be distributed to every subsystem in terms of an Information
Distribution Factor (IDF) to form a feedback procedure and provide an accurate initial
value for the subsystem.

The FKF flow chart utilised by this paper is illustrated in Figure 1. The global optimal
solution X̂g(t) (when t = k) can be obtained by:

{
X̂g(k) = Pg(k) · [P−1

1 (k)X1(k) + P−1
1 (k)X2(k)]

Pg(k) = [P−1
1 (k) + P−1

1 (k)]−1
(7)

What is more, the IDF of the feedback procedure is as follows:

βj =
‖Pj (k)‖−1∑2
j =1 ‖Pj (k)‖−1

(8)

where j = 1, 2; ‖Pj (k)‖ =
√∑

diag(PT
j (k) · Pj (k)). Equation (7) can integrate the informa-

tion from each subsystem and the main system will feedback the state by means of the IDF
illustrated in Equation (8).

3. SIMULATION RESULTS AND DISCUSSION. The Mars Pathfinder was launched
on 4 December 1996 and landed on Mars on 4 July 1997. In the near seven-month cruise
phase the ground navigation group utilised VLBI and USB of the DSN to navigate the
probe. The probe conducted four orbit manoeuvrings and one end correction (Golombek
et al., 1997), shown in Table 3.
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Figure 2. Accuracy of the OCN system. The position and velocity accuracy are evaluated by the biases
between calculated orbit and the nominal orbit in this paper.

We use the cruise phase from 1 March 1997 to 9 June 1997 because this timeline
includes only one orbit manoeuvring (3rd, 97-05-06). Thus, the orbit would be very stable
and is similar to our dynamic model Equation (1). Additionally, 101 days Mars Pathfinder’s
cruise orbit data are used and the sampling interval is 864 seconds. OCN and XNAV are
first tested separately to ensure the validity of our FORTRAN program and to evaluate the
performances of the single systems. After that, we use FKF to integrate the single systems
and to verify the outstanding nature of the integrated system (main system).

3.1. Single system experiments. The simulated observations of OCN or XNAV are
first processed by UKF to evaluate the performance of a single navigation system (OCN or
XNAV). Particularly, the experiential initial variance matrix of the first step prediction of
OCN and XNAV is as follows:

P(0|0) = [1002 km 1002 km 1002 km 102 m/s 102 m/s 102 m/s].

The observation variance of OCN and XNAV is also assumed by the pointing accuracy
of the celestial navigation camera and the positioning accuracy of pulsars evaluated by
profile integration time, respectively. They are R1 = [2502 km 3502 km 3502 km 3502 km]
for OCN which is equal to the high accuracy navigation camera’s precision and R2 =
[8602 m 15602 m 542 m 14932 m 9322 m 2822 m 1512 m] for XNAV which is also equal
to 500 s integration time of the pulse profile. The clock error parameters are set as a0 = 0·1
nanoseconds and a1 = 1 picoseconds per day. The Roemer Delay and Shapiro Delay are
exclusive of this case.

The bias between the calculated trajectory and nominal orbit of OCN is illustrated in
Figure 2. δ represents bias and X , Y, Z are the three axes, respectively. The calculated orbit
converges within ten epochs (8640 seconds). Moreover, both position and velocity are very
stable because the biases after the tenth epoch are very smooth. The accuracy of the three
axes is similar to each other and the magnitude of position and velocity errors are a hundred
kilometres and several tens of metres per second.

Figure 3 illustrates the calculated orbit determined by XNAV. The biases are symmetric
about the zero on all three axes. However, the biases of the position and velocity grow
much larger after the 60th day. This phenomenon shows that the orbit has overlap with the

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0373463316000874
Downloaded from https:/www.cambridge.org/core. IP address: 195.77.228.228, on 13 Jul 2017 at 07:00:59, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0373463316000874
https:/www.cambridge.org/core


726 JIANDONG LIU AND OTHERS VOL. 70

Figure 3. Accuracy of the XNAV system.

Figure 4. Accuracy of OCN/XNAV integrated navigation system.

nominal orbit, however, the dynamical model might not be so precise at end of the epoch
because of the orbit manoeuvring on the 60th day. Moreover, the biases are not similar in
the three axes, because the imperfect distribution of navigational X-ray Pulsars (most of
them locate in the plane of the galaxy) and because of the nature of the simulated XNAV
observations (the geometry of the observations are similar to Space-VLBI).

3.2. Integrated system experiments.
3.2.1. General case. In this general case, the main system is integrated by the above

single navigation system via FKF. The parameters such as clock errors are all the same as
the single system.

Figure 4 shows that the accuracy of the integrated navigation system is better than single
OCN or single XNAV. Additionally, this accuracy is also better than ground VLBI/USB
techniques. The bias in the X-axis is a bit larger than the other two axes as shown in
Table 4. This result illustrates that the integrated OCN/XNAV inherits both stability and
high accuracy from the single navigation system due to the information fusion procedure
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Table 4. Statistical accuracy of integrated system: general case.

Bias max min mean SD

δX/km 2·74 −0·07 1·44 0·36
δY/km 1·98 −0·82 0·88 0·28
δZ/km 2·18 −1·19 0·76 0·26
δVX/ms−1 0·01 −2·36 −1·32 0·31
δVY/ ms−1 1·01 −0·99 −0·13 0·38
δVZ/ ms−1 1·01 −0·54 −0·06 0·19

Figure 5. The orbit accuracy with different observation noise: the red line represents the worst orbit
accuracy and the black line represents the best orbit accuracy. The orbit accuracy is evaluated by square
root of the three axes (Same meaning as Figures 6–9).

provided by FKF. The Standard Deviations (SD) listed in Table 4 show that the integrated
system converges well.

3.2.2. Experiments with only random observation errors. In this experiment, we
assume that the systematic errors of the integrated system have been eliminated or reduced
to the extent that they can be neglected. The pointing accuracy of the celestial sensors in six
grades and the integration time of the pulse profile of Pulsars are investigated to evaluate
the performance of the system.

Parts of the testing results are illustrated in Figure 5. The statistic results including all of
the cases are listed in Table 5 in terms of maximum value, minimum value, mean value and
Standard Deviation. The lowest accuracy celestial sensors and shortest integration time that
is shown in Table 5 (the 6th case) generate the worst orbit accuracy. The 2nd to 5th cases
have minor differences to each other in all of the four indices, which indicate that the sub-
OCN systems have very limited accuracy contribution to the main navigation system. The
reason will be discussed in Section 3.3. In turn, the accuracy of XNAV observations has a
major influence on the integrated system, which can be deduced from the comparison of
best case (the 1st case) and the worst case.

3.2.3. Experiments with systematic errors. The Roemer delay and Shapiro delay
would have a major influence on the performances of the integrated navigation system
because both of these delays are systematic errors. In these experiments, the celestial
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728 JIANDONG LIU AND OTHERS VOL. 70

Table 5. The orbit accuracy statistics. The six celestial accuracy grades are shown in Table 2 and the numbers
in the parentheses represent integration time of Pulsar profile.

Value 1(1500 s) 2(1000 s) 3(1000 s) 4(1000 s) 5(1000 s) 6(500 s)

max min max min max min max min max min max min
Bias mean SD mean SD mean SD mean SD mean SD mean SD

δX/km 3·27 −3·56 2·70 −3·84 3·18 −3·23 2·66 −2·90 2·89 −2·68 3·79 −4·45
−0·16 0·73 −0·18 0·90 −0·14 0·91 −0·22 0·91 −0·16 0·92 −0·19 1·28

δY/km 1·07 0·21 0·94 0·20 1·07 0·24 0·94 0·26 0·97 0·32 0·78 0·18
0·48 0·06 0·48 0·08 0·48 0·08 0·47 0·08 0·48 0·08 0·47 0·11

δZ/km 1·59 −0·68 1·68 −0·32 1·46 −0·63 1·50 −0·34 1·51 −0·57 2·07 −0·75
0·60 0·25 0·61 0·36 0·59 0·37 0·63 0·36 0·60 0·37 0·62 0·49

δr/km 3·09 0·57 4·20 0·64 3·55 0·56 3·21 0·59 3·10 0·54 4·91 0·55
1·04 0·37 1·18 0·45 1·19 0·41 1·19 0·47 1·18 0·46 1·26 0·68

δVX/ 1·10 −2·85 1·23 −2·88 1·23 −2·75 1·10 −2·69 0·99 −2·45 0·83 −2·73
ms−1 −1·26 0·37 −1·26 0·29 −1·26 0·26 −1·26 0·29 −1·26 0·29 −1·26 0·39
δVY/ms−1 1·51 −0·67 1·63 −0·64 1·63 −0·63 1·75 −0·64 1·65 −0·65 1·62 −0·70

−0·11 0·36 −0·11 0·36 −0·11 0·36 −0·11 0·36 −0·11 0·36 −0·11 0·36
δVZ/ms−1 1·12 −0·63 1·12 −0·59 1·24 −0·66 1·12 −0·60 1·25 −0·61 1·36 −0·92

−0·07 0·20 −0·07 0·17 −0·07 0·16 −0·07 0·17 −0·07 0·17 −0·07 0·21
δVr/ 3·00 0·60 3·03 0·52 2·90 0·58 2·84 0·61 2·60 0·56 2·88 0·46
ms−1 1·35 0·33 1·34 0·25 1·34 0·23 1·34 0·25 1·34 0·26 1·35 0·33

Figure 6. The systematic errors influence on orbit accuracy.

sensors still have six grades and the clock errors are the same as in the single system
experiments.

Figure 6 shows the accuracy of the orbit position and velocity performance when the
observations of XNAV are mixed with systematic errors in terms of Roemer Delay, Shapiro
Delay and clock errors. The position bias has obviously variable tendency because the two
delays have a functional relationship with the position vector of the spacecraft as shown in
Equation (5). The peak near the 60th day is the orbit manoeuvring which can be detected
distinctly by our filter. We have completed six experiments based on the accuracy of the
celestial sensors. The best performance and worst performance are shown in Table 6. There
are no distinct differences among the uncertainties when the integration time is larger than
1000 seconds. The velocity of the spacecraft converges well except when the probe makes
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Table 6. The statistical table of the orbit accuracy under the influence of Roemer Delay and Shapiro Delay.

Value The best accuracy/1(1500 s) The worst/6(500 s)

Bias max min mean SD max min mean SD

δr/km 171·11 3·33 23·02 17·72 170·5 1·915 22·99 17·75
δV/m/s 17·09 0·35 1·37 0·49 16·44 0·25 1·41 0·63

Figure 7. The orbit accuracy with clock offset equals to 10−7 seconds. The cyan arrows line is the trend of the
worst position accuracy (the same in Figure 8 and Figure 9).

a manoeuvre (60th day) and the adjustment of the filter at the 80th day. The orbit is suffering
a long-term drift under the influences of these two delays.

3.2.4. Experiments with different clock errors. The errors of the measurements are
added in terms of celestial sensor of medium accuracy and the integration time of 1000 s.
The testing results (best and worst) are portrayed in Figures 7, 8 and 9. All of the results
are shown in Table 7. The worst cases in Figures 7– 9 are generated when the drift of
the clock equals 10−8 seconds per day and the best cases are generated when the drift is
10−12 seconds per day. The accuracy of the orbit is stable when the clock offset is less than
10−8 seconds and clock drift less than 10−9 seconds per day. Most importantly, the worst
position accuracy is within five kilometres and the worst velocity accuracy is within 4 m/s.
The orbit drifts along with the drift of the clock.

3.3. Statistical evaluation of the accuracy. A general statistical evaluation of the
accuracy of this paper is illustrated in Table 8 (under the condition that the Kalman Filters
having converged and exclusive of orbit uncertainty caused by orbit manoeuvre). Gener-
ally, the accuracy of single OCN is very common compared with current OCN techniques
that have been applied in deep space missions. However, the accuracy of single XNAV is
better than the ground testing results of SEXTANT because our experiments did not take
into account the orbit uncertainty caused by time-frequency transfer and profile correlation
in the XNAV system.

The integrated OCN/XNAV has a good performance, which is better than the single sys-
tem due to the positive feedback provided by the FKF algorithm. In addition, the accuracy
of the integrated system is mostly ensured by the XNAV and the stability of the system is
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Figure 8. The orbit accuracy with clock offset equal to 10−8 seconds.

Figure 9. The orbit accuracy with clock offset equal to 10−9 seconds.

Table 7. The orbit accuracy with different clock errors.

a1 10−7s 10−8s 10−9s

a0 (second/day) max min mean SD Max min mean SD Max min mean SD

10−8 δr/km 5·00 0·58 1·74 0·86 4·67 0·54 1·54 0·70 4·64 0·55 1·52 0·71
δV/ms−1 2·72 0·57 1·34 0·26 3·21 0·55 1·35 0·34 3·92 0·55 1·35 0·33

10−9 δr/km 4·51 0·57 1·35 0·56 3·95 0·57 1·13 0·42 3·66 0·55 1·08 0·40
δV/ms−1 3·20 0·57 1·36 0·38 3·02 0·59 1·34 0·25 2·83 0·52 1·35 0·36

10−10 δr/km 4·36 0·55 1·09 0·39 3·10 0·54 1·11 0·43 3·24 0·56 1·19 0·46
δV/ms−1 2·78 0·57 1·35 0·29 2·73 0·49 1·35 0·36 2·63 0·57 1·34 0·26

10−11 δr/km 3·59 0·57 1·15 0·42 3·64 0·58 1·20 0·47 3·24 0·56 1·19 0·46
δV/ms−1 2·82 0·67 1·34 0·25 2·86 0·58 1·34 0·27 2·63 0·57 1·34 0·26

10−12 δr/km 3·08 0·58 1·10 0·34 4·03 0·53 1·15 0·44 3·24 0·56 1·19 0·46
δV/ms−1 2·87 0·70 1·34 0·22 2·61 0·64 1·34 0·25 2·63 0·57 1·34 0·26
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Table 8. The general statistic of the accuracy of OCN, XNAV and
integrated OCN/XNAV (absolute value).

3-axis position bias (km) 3-axis velocity bias (m/s)

System max min mean max min mean

OCN 140 100 120 130 100 120
XNAV 15·0 0 2·5 25 10 16
OCN/XNAV 5·0 0 2·5 4·0 0·0 2·0

Figure 10. The IDF of OCN system (β1) and XNAV system (β2)(General case).

Figure 11. The performance of OCN subsystem after the feedback adjustment (General case).

mostly ensured by the OCN system. The ratio of IDF of OCN and IDF of XNAV is about
0·18:0·82 (Figure 10), which shows that the accuracy of the integrated system is mostly
provided by XNAV. At the same time, the subsystem of OCN inherits the accuracy of the
main system completely as illustrated in Figure 11.

The accuracy of the XNAV subsystem is more stable than the single XNAV and the
accuracy converged very well as portrayed in Figure 12. In other words, the OCN system
has a very strong influence on the stability performance of the integrated system.

However, a few drawbacks do exist in the system. The potential disadvantages of our
system might be as follows: The observational platform of OCN might be so large that the
spacecraft cannot use this hardware load. This problem can be solved by using a narrow-
field navigation camera such as the one on board MRO. Secondly, the number of observable
X-ray Pulsars might be too many to scan. The limited number of observations will influence
the stability of the XNAV.
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Figure 12. The accuracy performance of XNAV subsystem after the feedback adjustment (General case).

Figure 13. The Geocentric range of Mars Pathfinder spacecraft (s/c) in this paper.

3.4. Comparison with current ground tracking techniques. The state-of-the-art
ground-based tracking techniques or observations utilised in deep space navigation are
radiometric observational methods in terms of two-way Doppler, two-way range and
Delta-DOR (Bhaskaran, 2012). Traditionally, two-way Doppler and range observations are
acquired by ground radar in the S/X band, which is also known as Unified S-Band (USB).
The Delta-DOR use VLBI antennas to observe the Quasar and the signal broadcast by the
on board signal source.

The accuracy of time delay of Delta-DOR is about one nanosecond which corresponds
to an orbit accuracy of four kilometres per AU (James et al., 2009). The Geocentric range
of spacecraft in this paper is larger than two AU (Figure 13), that is, if we use current high
accuracy Delta-DOR to navigate the probe then the orbit uncertainty would not be better
than eight kilometres.

4. CONCLUSION. In this paper, an integrated Optical Celestial Navigation (OCN) and
X-ray Pulsars Autonomous Navigation (XNAV) system is realised and evaluated for the
orbit of Mars Pathfinder. Our autonomous navigation system can provide a stable and high
accuracy orbit solution for a Mars probe or other deep space spacecraft. The performance of
the system is better than single OCN and XNAV. Firstly, the system can acquire an accuracy
of position/velocity within five kilometres and 4 m/s even though the uncertainty of the
celestial sensors is large and the XNAV signal process time is short. Secondly, the Roemer

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0373463316000874
Downloaded from https:/www.cambridge.org/core. IP address: 195.77.228.228, on 13 Jul 2017 at 07:00:59, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0373463316000874
https:/www.cambridge.org/core


NO. 4 MARS CRUISE ORBIT DETERMINATION 733

delay and Shapiro delay have a major influence on the orbit accuracy. Thus, these kinds
of systematic errors of the system should be modelled or eliminated before the navigation.
Thirdly, if the offset and drift of the clock are better than 10−9 seconds and 10−9 seconds
per day respectively, these terms have limited or minor influence on navigational accuracy.
Otherwise, these errors should be taken into account to obtain a precise orbit. The system’s
performances such as accuracy and autonomous ability are better than current ground-based
tracking methods.
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