

This superb Canigou Sunset Picture taken from Allauch on Nov $1^{\text {st }}$ 2005 was subsequently published on this very interesting dedicated site (http://canigou.allauch.free.fr/Refract atm.htm) covering a number of aspects related to such events.

This document analyses all the environment of this Picture. Special attention is devoted to the nearby Canigou Atmospheric Refraction and to the far-away Sun Astronomical Refraction, both showing up at very low heights. In particular, being under the Observer's Astronomical Horizon the Sun needs special care to check whether it reasonably fits to the standard Astronomical Refraction estimates applicable to such low heights.

Although its Refraction numerical results significantly depart from the ones obtained through the "Standard Atmosphere" usual computations (namely: Horizon Dip, Atmospheric Elevation and Sun Refraction) this Author's document is quite interesting.

1 - WGS84 Ellipsoid data, 3D computations. The "Astronomical Horizon" (AH) is perpendicular to the Local Vertical.
1.1 - Allauch Notre Dame du Château: N43²0'12"/E005²9́10", AMSL+310m, EGM08+48.9m, WGS84+360m
1.2 - Pic du Canigou: N4231'08" / E002² ${ }^{\prime}{ }^{\prime} 24^{\prime \prime}$, AMSL+2,784m, EGM08+52.2m, WGS84+2,836m
1.3 - From 1.1 and 1.2 we get for the unrefracted straight line between Allauch (A) and Canigou (C):
1.3.1 - Straight-in Distance $\boldsymbol{D}=\mathbf{1 4 2 . 3}$ NM, Departure Azimuth $\mathbf{2 5 0 . 8 6 5 9 5 ^ { \circ }}$, Canigou height $\mathbf{- 3 8 . 6 2}$ under AH. Ellipsoid radius at Allauch 6385.770 km and Geometrical Unrefracted Horizon Dip: UHD = -33.87' under AH. 1.3.2 - UHD Refraction of the Horizon: $33.87^{*} 0.08=2.71^{\prime}$, hence Refracted Horizon Dip $=-31.16^{\prime}$ under AH. 1.3.3 - Atmospheric Vertical elevation Ve from Allauch (A) to Pic du Canigou (C): Ve = $D^{*}(0.18 / 2)=+12.80^{\prime}$ Hence Refracted (C) is at $-38.62^{\prime}+12.80=-25.82^{\prime}$ under AH. Hence Refracted (C) 5.34' above the Allauch Refracted Maritime Horizon (RMH).

2 - Astronomical data from VSOPO9A, IAU 2006 (P03) Precession and IAU 2000A Nutation
2.1 - Since it shows at 0.7' height above Refracted (C) the Refracted Sun is at -25.12' under the Local Horizon. Since it shows 6.4' left of Refracted (C) the Refracted Sun Azimuth is at 250.76.
2.2 - Astronomical data then indicate that:

At $U T=16 h 30 m 52.0 s$, Sun geocentric/topocentric height at $-1^{\circ} 03.14^{\prime} /-1^{\circ} 03.29^{\prime}$ with Azimuth at 250.76°.
2.3 - From 2.1 and 2.2, with $63.29^{\prime}-25.12^{\prime}=38.17^{\prime}$, the Sun Center observed Refraction is at -38.2^{\prime}

3 - On-site Weather data from https://weatherspark.com/for Nov 1 ${ }^{\text {st }}, 2005$ 16h30m UT
3.1 - At the sea-level Marseille Airport (LFML / MRS) for that evening: QNH 1020 mb , Temp $=+18.3^{\circ} \mathrm{C}$
3.2 - For nearby Allauch (310 m MSL), we retain: $\mathbf{P}=\mathbf{Q F E}=983 \mathbf{m b}, \boldsymbol{\Theta}=+16^{\circ} \mathrm{C}$.

4 - Computation of the Sun Refraction (Sun Center height at -25.12' below the Local Horizon)
4.1 - We should remember that the Standard Refraction Tables dispersion is close to 1^{\prime} at the Horizon. For h=0 ${ }^{\circ}$ and $1013.25 \mathrm{mb} / 10^{\circ} \mathrm{C}$ the 1981 Éphémérides Nautiques (EN) indicate -33.8' while the 1983 NAL gives -34.6' .
4.2 - The refraction Daily Correction Factor (DCF) " μ " is equal to $\left(P / P_{0}\right)^{*}\left(\mathbf{2 7 3 +} T_{0}\right) /(\mathbf{2 7 3 + \Theta})$. Hence for both EN and NAL: $(983 / 1010) *(283 / 289)=\mu=0.953$. With $h=-25.12^{\prime}$ the Augmented Standard Refraction Tables yield:

- For the NAL: $R_{a}^{\prime}(N A L)=-38.0^{\prime}+/-2^{\prime}$, a difference of 0.2^{\prime} with the observed value at $-38^{\prime} 2$.
- For the $E N: R_{a}^{\prime}(E N)=-36.8^{\prime}+/-2^{\prime}$, a difference of 1.4^{\prime} with the observed value at -38.2^{\prime}.

NOTE 1 - From 310 m MSL we have [far] exceeded any practical limit to observe a crisp refracted maritime horizon. The Pic du Canigou refracted summit had to be used as a relay. Alternately a vertical theodolite could have been and still could be used.

NOTE 2 - While our no-Refraction geometrical computations all agree we observe some significant differences between the initial document http://canigou.allauch.free.fr/Refract atm.htm and our results here-above, with the most important ones being:
(2a) Refracted horizon dip: for an Altitude of 310 m we compute $-31.16^{\prime}(1.77 \sqrt{h m})$ while the Author seems to use -33.1^{\prime}.
(2b) Sun Refraction (True Sun - Refracted Sun): we observe -38.2' while the Author seems to observe -33.1'.
(2c) Pic du Canigou Vertical Elevation due to the Atmospheric Refraction: we compute $+12.8^{\prime}$ while the Author uses $+7.5^{\prime}$.
Our " $(2 c / 2 b)$ " ratio is 0.33 . Without some careful additional checks it seems a bit difficult to fully accept the Author's value at 0.22 as well as his (2a), (2b) and (2c) values here-above. Again, a vertical theodolite would be the final judge here.

