After selecting Body, visualize that you are standing at the center of a 12 hour clock face and th vertical circle from your zenith passing through Body, intersects the horizon at the $12 \mathrm{o}^{\prime}$ clock position. Select Body y_{2} from a vertical circle that intersects the horizon at or near the 8 o'
position and Body $_{3}$ from a vertical circle that intersects the horizon at or near the 4 o'clock position, this will produce the optimum crossing angles at the intersection of the 3 circles

Three Body Fix Using Intersections of Circles of Equal Altitude

Body $_{1} \quad$ ARCTURUS \square GMT $_{1}$ 19:20:00
ant \qquad deg. \qquad N
HO_{1} \qquad 13.3 min
Body ${ }_{7}$ is NW of the observer
GP of Body Lat $19^{\circ} 05.5^{\prime} \mathrm{N} \quad$ Lon $41^{\circ} 59.7^{\mathrm{T}} \mathrm{W}$
Radius of the Circle of Equal Altitude 2326 n . mi.

Body $_{2}$ RIGIL KENTAURUS

Enter data into yellow cells

Limb GII GMT $_{2}$ 19:20:00
GHA_{2}
35 deg. 54.1 m
$\operatorname{Dec}_{2} \quad 60 \mathrm{deg} . \quad 54.8 \mathrm{~min}$.
Ho_{2} \square
\qquad

A Circle of Equal Altitude

A Circle of Equal Allitude (CEA) is centered at the Geographic Position(GP) of a Body. The Latitude of the body's GP is defined by the body's Declination(Dec). The Longitude of the body's
GP can be determined from the body's Greenwich Hour Angle (GHA). The radius of a Circle of GP can be determined from the body's Greenwich Hour Angle (GHA). The radius of a Circle
Equal Altitude in nautical miles is $60 \times\left(90^{\circ}-\right.$ Ho). When three bodies are observed, the three Equal Altitude in nautical miles is $60 \times 90^{\circ}$ - Ho$)$.
Circles of Equal Altitude will have six intersections.

	Day	Month	Year
Date @ Greenwich			Aug.
		2018	

$$
\text { Body }_{2} \text { is SSW of the observer }
$$

GP of Body ${ }_{2}$ Lat $60^{\circ} 54.8^{\prime} \mathrm{S}$ Lon $35^{\circ} 54.1^{\prime} \mathrm{W}$
Radius of the Circle of Equal Altitude 3288 n . mi.
L \qquad GMT $_{3}$ 19:20:00
$\mathrm{GHA}_{3} \quad 318$ deg. $\quad 11.6$ min
$\mathrm{Dec}_{3} \quad 8 \mathrm{deg}$.
\qquad 26.9 min

Body $_{3}$ is $\quad \mathbf{E}$ of the observer
GP of Body ${ }_{3}$ Lat $8^{\circ} 55.3^{\prime} \mathrm{N}$ Lon $41^{\circ} 48.4^{\prime} \mathrm{E}$
Radius of the Circle of Equal Altitude 3513 n . mi.
Observer's position determined from the intersections of Circles of Equal Altitude

This worksheet assumes all sights were taken from the same geographic position.

Select Intersections to Use in Calculating Fix

If the sights were "accurate", three of the intersections listed below will be at or near the observer's geographic position.

