A WORD ABOUT "LUNARS"

INITIAL WORD: This Document was initially triggered by a request e-mailed from Dave Walden (08 Aug 2015) to study a 1855 Lunar.
The "Classical" Lunar Methods - some of them with a number of refinements - use a Moon to Celestial Body observed Sextant Distance and

 distances to match the computed geocentric distance derived from the Sextant Distance

In Classical Lunar Methods the benchmark is the geocentric predicted distance.
Various Classical Lunar Methods were implemented and in use for about one century (1770 A.D. - 1870 A.D.) with satisfactory results through the use of tables. They required regular training from Observers and stayed within normal reach of standard - nonetheless extremely careful and meticulous - Navigators at sea. Whatever their refinements, there are still cases which cannot be
[sufficiently] accurately solved by any such single Classical Method. In other words, some bits of accuracy are lost here and there during the classical "Lunar clearing" process. The very best classical manual computation methods have a built-in accuracy just reaching the 0.2^{\prime} level under most cases. Implementation of Classical Methods on modern computers enables to exceed the 0.1^{\prime} accuracy level. The main shortcoming of the Classical Methods - even when implemented with the Best Planetary Theories on modern computers - is that they fail to accurately represent the "Longitude Error / Sextant Error" ratio. In other words, they remain short of providing Navigators with meaningful "Immediate Warnings" about ill conditioned Lunars.

Although Lunars have definitely become extinct in current day to day life, modern computation power can tackle them with much better

 the Classical Methods, and they cannot be performed by hand.

In Modern Lunar Software, there is a significant change in paradigm since the benchmark has directly become the Sextant observed distance itself. No longer required focusing onto the Geocentric Center to Center Distance which has then become only an [optional]

 Lunars.

IMPORTANT NOTE: Nonetheless, one should not forget that the results of both the "Classical" and the "Modern" methods can be [extremely] sensitive to the Refraction models used, mainly at low altitudes. Hence with any method, it is preferable not to observe Bodies with heights less than 5° or even 10° above the horizon. However, given their high qualities, "Modern" Lunar Methods - i.e. the ones using Sextant Apparent Distances as benchmarks - should nonetheless be considered as [much] more efficient and reliable at tackling low altitude Lunars than their "Classical" counterpart[s].

I have solved it as follows, with $\Delta T=+7,7 \mathrm{~s}$

 Distance $=43^{\circ} 52^{\prime} 10.0^{\prime \prime}$, UT1 $=08 h 11 m 45.6 \mathrm{~s}$ (with a "Cleared" Distance at $45^{\circ} 03^{\prime} 11.7^{\prime \prime}$).

Sextant Distance change: $-7.823^{\prime \prime} / \mathrm{min}$ of UT1

Error on UT1: $-46.0 s /+0.1^{\prime}$ Sextant Distance Error

Error on Longitude: 11.5' towards the East/+0.1' Sextant Distance Error

NOT AN OPTIMUM LUNAR ENVIRONMENT

Lunars (2), (3) and (4):

I have then investigated 3 simultaneous synthetic Lunars occurring at the same time in different places.
 Target, Date, RA ("h:m:s"), DEC ("d:m:s"), Distance (au, with 1 au = 149597870 km)
 km
For the Sun Semi-Diameter, no correction for irradiation has been made, as this is an observer dependent effect.
 ARIES GHA $=107.0579318^{\circ}\left(107^{\circ} 03^{\prime} 28^{\prime \prime} 555\right)$. Here I have used $\Delta T=+7.68 \mathrm{~s}$. $H P=0.904419770^{\circ}\left(54.26518619^{\prime}\right)$
(23454.79095)

 for $\mathrm{ALT}=+400 \mathrm{~m}$ (WGS84), Height of Eye $=0 \mathrm{ft}$ with $68^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ and QFE $=27.6^{\prime \prime} \mathrm{Hg}$.

$\begin{gathered} 07 \text { SEP. } 1855, \Delta T=+7.68 \mathrm{~s} \\ \text { UT1 }=08 \mathrm{~h} 04 \mathrm{~m} 52.32 \mathrm{~s} \\ (\mathrm{TT}=08 \mathrm{~h} 05 \mathrm{~m} 00.00 \mathrm{~s}) \end{gathered}$	Lunar (2)		Position:Luna N2 $9^{\circ} 27$	$\begin{aligned} & \text { (3) } \\ & 12^{\prime \prime} \mathrm{W} 005^{\circ} 00^{\prime} 00^{\prime \prime} \end{aligned}$	Position:Luna $0^{\circ} 0$	$\begin{aligned} & \hline r(4) \\ & J^{\prime} 00^{\prime \prime} \mathrm{E} 055^{\circ} 00^{\prime} 00^{\prime \prime} \end{aligned}$
The RATE OF CHANGE of the Geocentric Center to Center	Sun $Z=85.42227^{\circ}, d Z=-0.02538^{\prime \prime}$Moon $Z=85.42280^{\circ}, \mathrm{dZ}=-14.59022^{\prime \prime}$		Sun $Z=97.99004^{\circ}, d Z=-0.02765^{\prime \prime}$ Moon $Z=97.98965^{\circ}, d Z=-28.94652^{\prime \prime}$		Sun $Z=171.88345^{\circ}, \quad \mathrm{dZ}=-0.00864^{\prime \prime}$Moon $Z=271.11891^{\circ}, \mathrm{dZ}=+16.39620^{\prime \prime}$	
Distance is : - 27.206 " $/ \mathrm{min}$ of UT1, to be compared with values below.	$\begin{gathered} 75^{\circ} \mathrm{F}, 29.1^{\prime \prime} \mathrm{Hg} \\ \text { ALT }=0 \mathrm{~m} \quad(\mathrm{WGS8} 4) \end{gathered}$	$\begin{gathered} \text { ALT }=+400 \mathrm{~m} \text { (WGS84) } \\ 68^{\circ} \mathrm{F}, 27.6^{\prime \prime} \mathrm{Hg} \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{F}, 29.1^{\prime \prime} \mathrm{Hg} \\ \text { ALT }=0 \mathrm{~m} \quad(\mathrm{WGS} 84) \end{gathered}$	$\begin{gathered} \text { ALT }=+400 \mathrm{~m} \\ (\mathrm{WGS} 84) \\ 68^{\circ} \mathrm{F}, 27.6^{\prime \prime} \mathrm{Hg} \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{F}, 29.1^{\prime \prime} \mathrm{Hg} \\ \text { ALT }=0 \mathrm{~m} \quad(\text { WGS84) } \end{gathered}$	$\begin{gathered} \text { ALT=+400m (WGS84) } \\ 68^{\circ} \mathrm{F}, 27.6^{\prime \prime} \mathrm{Hg} \end{gathered}$
Synthetic Sextant Distance	$43^{\circ} 51^{\prime} 45.9^{\prime \prime}$	$43^{\circ} 52^{\prime} 04.8^{\prime \prime}$	$44^{\circ} 16^{\prime} 31.0^{\prime \prime}$	$44^{\circ} 28^{\prime} 02.2^{\prime \prime}$	$45^{\circ} 00^{\prime} 59.1^{\prime \prime}$	$45^{\circ} 01^{\prime} 01.0^{\prime \prime}$
Variation per minute of time	+ 0.377"	+ $0.297^{\prime \prime}$	-15.107"	-15.128"	-19.494"	-19.492"
Δ UT1 / Δ Sextant error	+ 954.2s / 0.1'	+ $1213.6 \mathrm{~s} / 0.1^{\prime}$	-23.83s / 0.1'	-23.80s / 0.1'	-18.5s	-18.5s
Δ Longitude / Δ sextant error	238.5' \rightarrow W) /0.1'	303.4' \rightarrow W)/0.1'	$6.0^{\prime}(\rightarrow E) / 0.1^{\prime}$	$5.9^{\prime}(\rightarrow E) / 0.1^{\prime}$	4.6' \rightarrow E)/0.1'	4.6' \rightarrow E)/0.1'

