A WORD About "Lunars"

INITIAL WORD: This Document was initially triggered by a request e-mailed from Dave Walden (08 Aug 2016) to study a 1855 Lunar.

In Classical Lunar Methods the benchmarks are the [Geocentric] "Cleared Distances".
Various Classical Lunar Methods were implemented and in use for about one century (1770 A.D. - 1870 A.D.) with satisfactory results through the use of tables. They required regular training from Observers and stayed within normal reach of standard - nonetheless extremely careful and meticulous - Navigators at sea. Whatever their refinements, there are still cases which cannot be [sufficiently] accurately solved by any such single classical Method. In other words, some bits of accuracy are lost here and there
 hand computation methods have a built-in accuracy just reaching the 0.15'/ 0.2' level under most cases. Modern computers can
 modern computers the Classical Methods fail to immediately represent the "Longitude change / Sextant Distance change" ratio. In other words, they remain short of immediately providing Navigators with meaningful "Warnings" on ill conditioned Lunars.

 Classical Methods, Modern successive approximations computations are huge and cannot be performed by hand at all

Hence, in Modern Lunar Software, there is a significant change in paradigm since the benchmarks have become the Sextant Observed

 [topocentric] rates of change may vary greatly according to local environment and may also considerably differ from their geocentric

IMPORTANT NOTE: Because of Refraction uncertainties at low altitudes, it is preferable not to observe Bodies with heights less than 5° or even 10° above the horizon. However "Modern" Lunar Methods should nonetheless be considered as [much] more efficient and reliable at tackling low altitude Lunars than their "Classical" counterpart[s].

Lunar (1): From: THE AMERICAN EPHEMERIS AND NAUTICAL ALMANACh 1855 p 512 and as discussed by William E. Chauvenet:

I have solved it as follows, with $\Delta T=+7,7$ s

For UT1 $=08 h 08 \mathrm{~m} 56.0 \mathrm{~s}$, I find the Sextant "synthetic" Distance to be at $43^{\circ} 52^{\prime} 30.0^{\prime \prime}$ (with a "Cleared" Distance at $45^{\circ} 04^{\prime} 28.5^{\prime \prime}$). For Sextant Distance $=43^{\circ} 52^{\prime} 10.0^{\prime \prime}$, I find UT1 $=08 \mathrm{~h} 11 \mathrm{~m} 45.6 \mathrm{~s}$ (with a "Cleared" Distance at $45^{\circ} 03^{\prime} 11.7^{\prime \prime}$).

Geocentric Center to Center Distance $-27.204^{\prime \prime} / \mathrm{min}$ of UT1. Sextant Distance rate of change: -7.823"/min of UT1
 Change on UT1: $-46.0 \mathrm{~s} /+0.1^{\prime}$ Sextant Distance change
 Change on Longitude: 11.5' towards the East/+0.1' Sextant Distance change.

THIS LUNAR ENVIRONMENT IS NOT OPTIMUM BECAUSE LOW ALTITUDE REFRACTION GREATLY "SLOWS DOWN" THE APPARENT BODIES CLOSURE RATE.

Lunars (2), (3) and (4):

From: Miriade.ephemcc.results (http://vo.imcce.fr/webservices/miriade/?forms\#)

 For the Sun Semi-Diameter, no correction for irradiation has been made, as this is an observer dependent effect.

 for $\mathrm{ALT}=+400 \mathrm{~m}$ (WGS84), Height of Eye $=0 \mathrm{ft}$ with $68^{\circ} \mathrm{F}$ ($20^{\circ} \mathrm{C}$) and QFE $=27.6^{\prime \prime} \mathrm{Hg}$.
dZ represents the parallax in Azimuth computed from the WGS84 Ellipsoid Surface.

$07 \mathrm{SEP} .1855, \quad \Delta \mathrm{~T}=+7.68 \mathrm{~s}$ $\mathrm{UT1}=08 \mathrm{~h} 04 \mathrm{~m} 52.32 \mathrm{~s} \quad(\mathrm{TT}=08 \mathrm{~h} 05 \mathrm{~m} 00.00 \mathrm{~s})$	Position: $330^{\circ} 06^{\prime} 39^{\prime \prime} \mathrm{W} 030^{\circ} 00^{\prime} 00^{\prime \prime}$		Position: $\operatorname{Lunar} 29^{\circ} 27^{\prime} 12^{\prime \prime} \mathrm{W} 005^{\circ} 00^{\prime} 00^{\prime \prime}$		Position: $\mathrm{N} 30^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{E} 055^{\circ} 00^{\prime} 00^{\prime \prime}$	
The RATE OF CHANGE of the Geocentric Center to Center Distance is:	Sun $Z=85.42227^{\circ}, d Z=-0.02538^{\prime \prime}$Moon $Z=85.42280^{\circ}, d Z=-14.59022^{\prime \prime}$		Sun $Z=97.99004^{\circ}, d Z=-0.02765^{\prime \prime}$ Moon $Z=97.98965^{\circ}, d Z=-28.94652^{\prime \prime}$		Sun $Z=171.88345^{\circ}, d Z=-0.00864^{\prime \prime}$Moon $Z=271.11891^{\circ}, \mathrm{dZ}=+16.39620^{\prime \prime}$	
-27.206"/min of UT1, to be compared with values below.	$\begin{gathered} 75^{\circ} \mathrm{F}, 29.1^{\prime \prime} \mathrm{Hg} \\ \mathrm{ALT}=0 \mathrm{~m} \quad(\mathrm{WGS} 84) \end{gathered}$	$\begin{gathered} \text { ALT }=+400 \mathrm{~m} \text { (WGS84) } \\ 68^{\circ} \mathrm{F}, 27.6^{\prime \prime} \mathrm{Hg} \\ \hline \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{F}, 29.1^{\prime \prime} \mathrm{Hg} \\ \text { ALT }=0 \mathrm{~m} \quad(\text { WGS84) } \end{gathered}$	$\begin{gathered} \text { ALT }=+400 \mathrm{~m} \text { (WGS84) } \\ 68^{\circ} \mathrm{F}, 27.6^{\prime \prime} \mathrm{Hg} \end{gathered}$	$\begin{gathered} 75^{\circ} \mathrm{F}, \quad 29.1^{\prime \prime} \mathrm{Hg} \\ \text { ALT }=0 \mathrm{~m}(\text { WGS84) } \end{gathered}$	$\begin{gathered} \text { ALT }=+400 \mathrm{~m} \text { (WGS84) } \\ 68^{\circ} \mathrm{F}, 27.6^{\prime \prime} \mathrm{Hg} \\ \hline \end{gathered}$
Moon LL with refraction	48.873	48.872	70.828	70.828	54.086	54.085
Sun UL with refraction	5.010	5.005	26.553	26.552	66.326	66.325
Synthetic Sextant Distances	$43^{\circ} 51^{\prime \prime} 45.9^{\prime \prime}$	$43^{\circ} 52^{\prime} 04.8^{\prime \prime}$	$44^{\circ} 16^{\prime} 31.0^{\prime \prime}$	$44^{\circ} 28^{\prime} 02.2^{\prime \prime}$	$45^{\circ} 00^{\prime} 59.1^{\prime \prime}$	$45^{\circ} 01^{\prime} 01.0^{\prime \prime}$
Variations per minute of UT1	+0.377"	+0.297"	-15.107"	-15.128"	-19.494"	-19.492"
Δ UT1 (s) / Δ Sextant Distance (0.1')	+954.2	+1213.6	-23.83	-23.80	-18.47	-18.47s
Δ Long. ${ }^{\prime}$) / Δ Sext. Distance (0.1')	238.5 (\rightarrow West)	303.4 (\rightarrow West)	6.0 (\rightarrow East)	5.9 (\rightarrow East)	4.6 (\rightarrow East)	4.6 (\rightarrow East)

