Using ICE with any "Delta-T"

USNO ICE computes Celestial Navigation Bodies positions and height corrections from User defined Positions.
Non User selectable ICE Delta-T values " δ Tice" are gradually shifting away from currently observed "Delta-T" values. Sooner or later this nuisance is to make ICE obsolete while on the other hand ICE has some very nice features.

Nonetheless, there does exist a simple repair patch ...
It is possible to compute all such ICE data for any chosen Latch, Lonch, UTch and δT ch through feeding ICE with fictitious $U T_{f}$ and Lonf (Lat unchanged) as long as such fictitious elements fulfill both conditions:
(1) - Celestial Bodies Equatorial coordinates (α and δ) to remain computed for the same TT

Since $T T=U T+\delta T$, this implies: $U T c h+\delta T_{c h}=U T_{f}+\delta T_{i c e}$. Hence:

$$
U T_{f}=U T_{c h}+\left(\delta T_{c h}-\delta T_{i c e}\right)
$$

(2) - From the fictitious Position all Bodies LHA's to remain unchanged

Since (1) already guarantees that all Equatorial coordinates have remained unchanged, therefore LHA Aries is to remain the same as in the real/chosen world. This implies an adequate shift in Longitude equal to the angle covered by GAST during the ($\delta T_{c h}-\delta T_{i c e}$) time interval. Hence:

$$
(\text { Lonf }- \text { Lonch }) \text { in arc minutes }=\left(\delta T_{c h}-\delta T_{i c e}\right) \text { in seconds of Time } * 1 / 4 *(366 / 365)
$$

For (δ Tch - δ Tice) positive, the shift from chosen Longitude into fictitious Longitude is towards the WEST.

As a consequence all ensuing Celestial Bodies local positions and computed corrections remain unchanged whether seen from the real world/chosen position at UTch or seen from the ICE fictitious position at UTf.

Example: For 2021 Oct 19th, 21:59:27 UT, with $\delta T_{c h}=+70.1$ s from $N 41^{\circ} 18.4^{\prime} / W^{\prime} 072^{\circ} 30.0^{\prime}$ (real world environment)

Real World environment computations using $\boldsymbol{\delta} \mathrm{T}_{\mathrm{ch}}=\mathbf{+ 7 0 . 1} \mathrm{s}$

Object	GHA	Dec 。 ,	$\begin{aligned} & \mathrm{Hc} \\ & \stackrel{0}{ }, \end{aligned}$	Zn	NAL Refr	SD	PA	Sum
SUN	15339.08	S 1018.43	-0 15.19	256.45	-34.03	16.06	0.15	-17.82
MOON	33948.26	N 0402.62	+ 038.86	85.18	-34.03	15.03	55.09	+36.09

Fictitious environment computations using ICE with $\delta T_{i c e}=+88.1 \mathrm{~s}$

$\left(\delta T_{c h}-\delta T_{i c e}\right)=-18 \mathrm{~s} . \operatorname{From}(1): U T_{f}=U T_{c h}+\left(\delta T_{c h}-\delta T_{i c e}\right)=21: 59: 27-00: 00: 18 \quad \Rightarrow \quad U T_{f}=21: 59: 09$
From (2) : $\left(\text { Lonf }^{\prime} \text { Lonch }\right)^{\prime}=\left(\delta T_{c h}-\delta T_{i c e}\right)_{s} * \frac{1}{4} *(366 / 365)=-4.5^{\prime} \quad \Rightarrow \quad$ Lonf $^{\prime}=$ W072 $^{\circ} 25.5^{\prime}$
Celestial Navigation Data for 2021 Oct 19 at 215909 UT (GMT) Delta $T=88.1$ seconds N 41 18.4/W 7225.5
Simplified 2D parallax computation and data by courtesy from Mr. Dave Walden

Almanac Data								
Object	GHA \circ	Dec \circ	Hc \circ	Zn \circ	Refr ,	SD ,	PA	Sum ,
SUN	15334.6	s10 18.4	-015.2	256.4	-34.0	16.1	.1	-17.8
MOON	33943.8	$n 402.6$	+038.9	85.2	-34.0	15.0	55.2	36.2

Conclusion: Same corrections with minor non-significant .1' difference due mainly to Parallax computation (2D vs. 3D).

