Frank E. Reed published a quiz here about a "Lunar" GMT determination from a Moon Picture (© Fred Espenak). From this plate angular distances can be estimated (1) : through a "scaling coefficient" from its only measurable Moon Diameter, or (2) : from a pixel count "Plate scale" determined elsewhere from its (18) visible stars.
After showing how much their tilt angles can change MOON Refracted Diameters, this paper also shows one method to derive the best angular value of the Diameter being used and solves for GMT through various methods.

Starting Data

05 Jan $2022 \quad \mathrm{TT}-\mathrm{UT}=+69.0 \mathrm{~s} \quad \mathrm{UT}=01 \mathrm{~h} 11 \mathrm{~m} 15.0 \mathrm{~s} \quad \mathrm{~N} 31^{\circ} 55.8^{\prime} / \mathrm{W} 109^{\circ} 07.2^{\prime} \quad$ Alt $=1,450 \mathrm{~m} \quad$ QFE=850mb $\quad \mathrm{T}=+10^{\circ} \mathrm{C}$ (1) - Apparent Equatorial Coordinates of date : HD 202284 (Point " $\mathrm{A}^{\prime \prime}$) Dec=-21¹2.4' GHA=163¹8.8' HD 202672 (Point "B") Dec $=-21^{\circ} 09.7^{\prime} \mathrm{GHA}=162^{\circ} 38.2^{\prime}$ Angular separation and relative orientation: 38.0 NM / 085.9° (2) - Refracted Horizontal Coordinates of date (Hs : Height as read in a zero error Bubble Sextant and Az : Azimuth) : HD $202284 \mathrm{Hs}=15^{\circ} 48.4^{\prime} \mathrm{Az}=231^{\circ} 46.6^{\prime} \mathrm{HD} 202672 \mathrm{Hs}=16^{\circ} 17.2^{\prime} \mathrm{Az}=231^{\circ} 21.0^{\prime}$ yielding : $37.9 \mathrm{NM} / 040.5^{\circ}$ Note: 0.1 NM smaller separation in (2) because refracted images are "dragged upwards" to one same Zenith point.

Plate measurements (see next page sketch)

From picture measure $A B=162 \mathrm{~mm}$, hence scaling coefficient " k " $=37.9 / 162 \mathrm{NM} / \mathrm{mm}=0.234 \mathrm{NM} / \mathrm{mm}$
From $A B$ as its Diameter draw Circle (Ce). From k convert : $\Delta \mathrm{Dec}=2.7 \mathrm{NM} \rightarrow 11.5 \mathrm{~mm}$ and $\Delta H s=28.8 \mathrm{NM} \rightarrow 123 \mathrm{~mm}$. Given relative Declinations and Heights, on each correct side of $A B$, draw points " E " and D " on Circle (Ce) as follows : $\underline{B E}=\Delta \operatorname{Dec}=11.5 \mathrm{~mm}$ (Star to North Pole, i.e. Declinations scale). Line EA is the GHA scale. And:
$\underline{B D}=\Delta H s=123 \mathrm{~mm}$ (Star to Zenith, i.e. Sextant Heights scale). Horizontal line DA is the Azimuth scale.
From center of Moon "C" draw horizontal line KCL parallel to DA. From "A" draw line ACP and AP= Far Limb distance. Through the "Moon horns tips" draw line MCN which defines the only Moon Diameter to be practicably measured. From point "A", draw any "upwards" line not intercepting the Moon itself.
This line intercepts KCL in point "F" representing Fictitious Star HD3* at the same altitude as the Moon Center "C". This same line intercepts MCN in "H" representing Fictitious Star HD4* on the "horns tips" extended line.

With HD 2022842000.0 Dec $=-21^{\circ} 17^{\prime} 41.819^{\prime \prime}$ and $R A=21 \mathrm{~h} 15 \mathrm{~m} 14.796 \mathrm{~s}$
Measure the differential coordinates from HD 202284 to HD3* and from HD 202284 to HD4*.
Perpendicularly onto line AE project point " F " into point " G " and point " H " into point " I ".
GF $=15.5 \mathrm{~mm}$, hence $\Delta \operatorname{Dec}\left(H D 3^{*}-\mathrm{HD} 202284\right)=15.5^{*} \boldsymbol{k}=+4^{\prime} 36^{\prime \prime} \rightarrow$ HD3* Dec $=-21^{\circ} 13^{\prime} 06^{\prime \prime}$
$\mathrm{IH}=44.5 \mathrm{~mm}$, hence Δ Dec (HD4* $\left.^{*}-\mathrm{HD} 202284\right)=44.5^{*} \boldsymbol{k}=+10^{\prime} 24^{\prime \prime} \rightarrow$ HD4* Dec $=-21^{\circ} 07^{\prime} 18^{\prime \prime}$
AG $=39 \mathrm{~mm}$, hence Δ RA (HD3* - HD 202284) $=39 \mathrm{~mm}^{*} \boldsymbol{k}^{*}(1 / \cos \operatorname{Dec}) * 4=+39,2 \mathrm{~s} \rightarrow$ HD3* RA $=21 \mathrm{~h} 15 \mathrm{~m} 54.0 \mathrm{~s}$ AI $=91 \mathrm{~mm}$, hence Δ RA (HD4* - HD 202284 $)=91 \mathrm{~mm} * \boldsymbol{k}^{*}(1 / \cos \operatorname{Dec}) * 4=+91,6 \mathrm{~s} \rightarrow$ HD4* $R A=21 \mathrm{~h} 16 \mathrm{~m} 46.4 \mathrm{~s}$

Various refracted and unrefracted Diameters with different tilt angles (assuming "spherical" Moon radius = 1,738 km)											
		With Refraction (QFE $=850 \mathrm{hPa}, \mathrm{T}=+10^{\circ} \mathrm{C}$)					Without Refraction				
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI
		Hs	Az	Far Limb Near Limb / Diam.$\begin{gathered} \mathbb{C}(\text { UL - LL) }=\text { Vertical Diam. } \\ =32.652^{\prime} \text { (with Refr.) } \end{gathered}$			Hs	Az	Far Limb $\mathbb{C}($ UL - LL) $=$ Vertical Diam. $=32.750^{\prime}$ (without Refr.)		
1	© UL	15 ${ }^{\circ} 74.275^{\prime}$	231.3°	$\begin{gathered} \mathbb{C}(\mathrm{UL}-\mathrm{LL})=\text { Vertical Diam. } \\ =32.652^{\prime} \text { (with Refr.) } \end{gathered}$			$15^{\circ} 71.513^{\prime}$	231.3°	$\begin{aligned} & \mathbb{C}(\text { UL - LL) = Vertical Diam. } \\ & =32.750^{\prime} \text { (without Refr.) } \end{aligned}$		
2	© LL	$15^{\circ} 41.623^{\prime}$	231.3°				$15^{\circ} 38.763^{\prime}$	231.3°			
3	©Center	$15^{\circ} 57.9^{\prime}$	231.3°	43.256' 10.518^{\prime} ' 32.738^{\prime}			$15^{\circ} 55.1^{\prime}$	231.3°			
4	HD 202284	$15^{\circ} 48.4{ }^{\prime}$	231.8°				$15^{\circ} 45.6$	231.8°	43.278'	10.528'	32.750'
5	HD 202635	$16^{\circ} 14.1^{\prime}$	231.4°	32.799'	0.144^{\prime}	32.655'	$16^{\circ} 11.4^{\prime}$	231.4°	32.894'	0.144'	32.750'
6	HD 202672	$16^{\circ} 17.2^{\prime}$	231.3°	35.618'	2.967^{\prime}	32.651'	$16^{\circ} 14.5^{\prime}$	231.3°	35.725'	2.975'	32.750'
7	HD3*	$15^{\circ} 58.1^{\prime}$	231.7°	38.445'	5.695'	32.750'	$15^{\circ} 55.3^{\prime}$	231.7°	38.450'	5.700'	32.750'
8	HD4*	$16^{\circ} 10.8^{\prime}$	231.6°	38.186'	5.471'	$\mathrm{MN}=32.715^{\prime}$	$16^{\circ} 08.0^{\prime}$	231.6°	38.299'	5.480'	32.749'

Note - As expected: close values for II/3 and II/7, and identical values for VI/1 and VI/6, and for VI/7 and XI.

Solving for GMT with HD 202284 Far Limb Distance (AP) through various methods

- With "scaling factor" : $\mathrm{MN}=139.4 \mathrm{~mm}=32.715^{\prime}$. Since $A P=184.2 \mathrm{~mm}$, then $\mathrm{AP}=43.23$ ' \rightarrow GMT $=01 \mathrm{~h} 11 \mathrm{~m} 11.0 \mathrm{~s}$. - Hybrid method : $M N=728.3 p x$ and $A P=966.9 p x$ Since $M N=32.715^{\prime}$ then $A P=43.43^{\prime} \rightarrow$ GMT $=01 \mathrm{~h} 11 \mathrm{~m} 48.8 \mathrm{~s}$.
- From "Plate scale" with 2.691 "/px. Since $A P=966.9$ px then $A P=43.37$ ', yielding \rightarrow GMT $=01 \mathrm{~h} 11 \mathrm{~m} 37.2 \mathrm{~s}$.

Overall conclusion : The "Plate scale" GMT determination is probably the most reliable one since its scaling involved 18 stars measurements. The other ones are derived from only one (uneasy) Diameter used for scaling.

