Stars and Planets occultations by the Moon Deriving positions for given Immersion and Emersion times

Solving for positions from a NavList quiz giving immersion and emersion times
"You're in the Western US. You see Zubenelgnubi occulted by the moon on 22 Feb 2022 at 11548 UT. Can you get a line of position? It reappears at 1227 22. Where are you?" By Mr. Dave Walden

The numerical results given here come from the following Ephemeris: INPOP Numerical Integration (TT-UT $=+69 \mathrm{~s}$), HIPPARCOS 2 Star catalog with IAU 2006 (P03) PRECESSION and IAU 2000A NUTATION.
Earth Equatorial Semi-Diameter = 6,378.137 km, "perfect sphere" Moon Semi-Diameter = 1,738 km

For any given time, the occulted positions curve - if any - lie at the intersection of the cylinder obtained through projecting the Moon shape from the occulted Body onto the Earth globe.

The proposed solution involves 2 main steps:
(1) - Assume a perfectly spherical Earth, no refraction and occulted Body at an infinite distance. Closely approximate the intersection of the applicable Immersion and Emersion curves.
(2) - From such "approximate" intersection, take in account Body Parallax, Earth Oblateness, Refraction and Observer's Altitude to derive the "real world" position fulfilling the requested Immersion and Emersion times.

First Approximation
(UT=11h05m48s adjacent figure to the left)
On the "Besselian" plan containing the Earth Center "C" and perpendicular to the occulted Body direction draw a spherical Earth with Radius = 1 and depict "D" as the Moon Center projection. With axes \boldsymbol{X}_{b} and \boldsymbol{Y}_{b} as shown and with Z_{b} aiming at the occulted Body, this plan intersects the Equatorial plan along the Xeq axis. With " $\boldsymbol{\alpha}$ " as a computation variable we can determine all intersection curve points ($\mathrm{x}_{b}, \mathrm{y}_{b}, \mathrm{z}_{b}$) since they belong to both the "Moon cylinder" $V\left(\lambda_{b}{ }^{2}+\mu_{b}{ }^{2}\right)=$ Moon Radius and to the Earth Surface $\left(x_{b}^{2}+y_{b}{ }^{2}+z_{b}{ }^{2}=1\right)$. Through a " β " rotation around Z_{b}, X_{b} overlaps $\boldsymbol{X}_{e q}$. Then a ($\pi / 2-\delta_{\text {Body }}$) rotation around $X_{\text {eq }}$ puts us in the Equator plan, and a [GHA Aries - (ARA Body - $\pi / 2$)] rotation around the North Pole yields our Intersection Curve usual Lat/Lon coordinates.
Starting computations $C D$ and β check values :
$\mathrm{UT}=11 \mathrm{~h} 05 \mathrm{~m} 48 \mathrm{~s}, \mathrm{CD}=0.959986$ and $\beta=62.703413^{\circ}$ $U T=12 h 27 \mathrm{~m} 22 \mathrm{~s}, \mathrm{CD}=0.632452$ and $\beta=118.871710^{\circ}$
Next Page Step (1) : From User chosen " $\alpha^{\prime \prime}$ increments it is possible to unfold a list of successive positions of the Occultation Curves for both UT times. Some careful search shows that there are 2 matching different coordinates. Next Page Step (2) : Refined " $\boldsymbol{\alpha}$ " increments narrow results down to 2 reasonable "Approximate Positions". Next page Steps (3) : Bracket each "Approximate Position" (2 such positions for each UT).

Refined approximations : Follow Next Page Steps (4), (5), (6) and (7).

Final results:

Target values: Immersion at 11h05m48s and Emersion at 12h27m22s
Position 1 : N32 ${ }^{\circ} 00.8^{\prime} / W^{\prime} 108^{\circ} 58.7^{\prime}($ within CONUS), Immersion at $11 \mathrm{~h} 05 \mathrm{~m} 47,9 \mathrm{~s}$ and Emersion at $12 \mathrm{~h} 27 \mathrm{~m} 21,8 \mathrm{~s}$
Position 2 : N24 $45.1^{\prime} / \mathrm{W} 112^{\circ} 58.8^{\prime}$ (outside CONUS), Immersion at $11 \mathrm{~h} 05 \mathrm{~m} 48,2 \mathrm{~s}$ and Emersion at $12 \mathrm{~h} 27 \mathrm{~m} 21,9 \mathrm{~s}$

(1) - First Computation (spherical Earth, no refraction)											
1st Approximate Position 1						1st Approximate Position 2					
α	+N/-S	+W/-E									
Immersion : 11h05m48s			Emersion : 12h27m22s			Immersion : 11 h 05 m 48 s			Emersion : 12 h 27 m 22 s		
9.024 .1113 .6			276.025 .2112 .8			35.031 .0109 .2			253.032 .6108 .3		
10.024 .3113 .3						36.031 .3109 .1			254.032 .3108 .6		
11.024 .5113 .1			277.024 .8112 .9			37.031 .7109 .0			255.032 .0108 .8		
12.024 .7112 .9			278.024 .5113 .0			38.032 .1108 .9			256.031 .7109 .1		
13.024 .9112 .7			279.024 .2113 .1			$\begin{aligned} & 39.032 .4108 .8 \\ & 40.032 .8108 .7 \end{aligned}$			$257.031 .4109 .3$		
14.025 .1112 .5			280.023 .8113 .2								
(2) - Second computation (spherical Earth, no refraction)											
2nd Approximate Position 1						2nd Approximate Position 2					
α	+N/-S	+W/-E									
Immersion: 11h05m48s			Emersion : 12 h 27 m 22 s			Immersion : 11h05m48s			Emersion : 12 h 27 m 22 s		
11.224 .5113 .1			277.824 .6113 .0			37.832 .0108 .9			255.531 .8109 .0		
11.324 .5113 .0			277.924 .5113 .0			37.731 .9108 .9			255.431 .9108 .9		
11.424 .5113 .0			278.024 .5113 .0			37.631 .9108 .9			255.331 .9108 .9		
11.524 .6113 .0			278.124 .5113 .0			37.531 .9108 .9			255.231 .9108 .9		
11.624 .6113 .0			278.224 .4113 .0			37.431 .8109 .0			255.132 .0108 .9		
(3) - Bracketing Approximate Positions											
Bracketing Approximate Position 1						Bracketing Approximate Position 2					
P1-NW: $N 24^{\circ} 40^{\prime} /$ W $113^{\circ} 10^{\prime}$ P1-SW: $24^{\circ} 20^{\prime} / \mathrm{W}^{\prime} 113^{\circ} 10^{\prime}$			P1-NE: $\mathrm{N} 24^{\circ} 40^{\prime} / \mathrm{W} 112^{\circ} 50^{\prime}$ P2-NW: N32 ${ }^{\circ} 04^{\prime} / \mathrm{W} 109^{\circ} 04^{\prime}$						P2-NE: N32 ${ }^{\circ} 4^{\prime} /$ W108 44^{\prime}		
			P1-SE: $\mathrm{N} 24^{\circ} 20^{\prime} / \mathrm{W} 112^{\circ} 50^{\prime}$			P2-SW: N3144'/W109 ${ }^{\circ} 04^{\prime}$			P2-SE: $\mathrm{N} 31^{\circ} 44^{\prime} / \mathrm{W} 108^{\circ} 44^{\prime}$		
(4) - Real World computation (Ellipsoid and refraction) Actual Immersion and Emersion times at Bracketing Positions											
Position 1						Position 2					
P1-NW$\mathbf{I}: 11 \mathrm{~h} 05 \mathrm{~m} 40,7 \mathrm{~s}$$\mathrm{E}: 12 \mathrm{~h} 26 \mathrm{~m} 58,7 \mathrm{~s}$			P1-NE I:11h06m06,9s E:12h27m47,5s			P2-NW$\mathbf{I}: 11 \mathrm{~h} 05 \mathrm{~m} 36,5 \mathrm{~s}$$\mathbf{E}: 12 \mathrm{~h} 27 \mathrm{~m} 08,5 \mathrm{~s}$			P2-NE$\mathbf{I}: 11 \mathrm{~h} 06 \mathrm{~m} 14,4 \mathrm{~s}$$\mathrm{E}: 12 \mathrm{~h} 27 \mathrm{~m} 43,2 \mathrm{~s}$		
P1-SW$\mathbf{I}: 11 \mathrm{~h} 06 \mathrm{~m} 09,2 \mathrm{~s}$$\mathrm{E}: 12 \mathrm{~h} 27 \mathrm{~m} 14,8 \mathrm{~s}$			$\begin{gathered} \text { P1-SE } \\ \mathbf{I}: 11 \mathrm{~h} 06 \mathrm{~m} 35,0 \\ \mathbf{E}: 12 \mathrm{~h} 28 \mathrm{~m} 04,2 \mathrm{~s} \end{gathered}$			$\begin{gathered} \text { P2-SW } \\ \text { I: 11h05m46,0 } \\ \text { E: } 12 \mathrm{~h} 27 \mathrm{~m} 35,9 \mathrm{~s} \end{gathered}$			P2-SE I: 11h06m23,8s E: 12h28m11,0s		
(5) - Interpolation to determine coordinates for Immersion : 11h05m48s and Emersion : 12h27m22s											
Position 1						Position 2					
11h05m48s Immersion at: $\mathrm{N} 24^{\circ} 40^{\prime} / \mathrm{W} 113^{\circ} 04.4^{\prime}$ and N24잉 $/$ W113 ${ }^{\circ} 26.4^{\prime}$						11h05m48s Immersion at: N32 ${ }^{\circ} 04^{\prime} /$ W108 ${ }^{\circ} 57.9^{\prime}$ and N3144' / W109 02.9^{\prime}					
12h27m22s Emersion at: N24 $4^{\circ} 40^{\prime} / \mathrm{W} 113^{\circ} 00.5^{\prime}$ and N24 ${ }^{\circ} 20^{\prime} / \mathrm{W} 113^{\circ} 07.1^{\prime}$						12h27m22s Emersion at: N32 ${ }^{\circ} 04^{\prime} / W^{\prime} 108^{\circ} 56.2^{\prime}$ and N3104 ${ }^{\prime} / \mathrm{W} 109^{\circ} 11.9^{\prime}$					
(6) - Coordinates for given Immersion : 11h05m48s and Emersion : 12h27m22s											
Position 1						Position 2					
						N32 ${ }^{\circ} 00.8^{\prime} / \mathrm{W} 108^{\circ} 58.7^{\prime}$					
(7) - Final Cross check vs. given Immersion : 11h05m48s and Emersion : 12h27m22s											
Position 1						Position 2					
Immersion at $11 \mathrm{~h} 05 \mathrm{~m} 48,2 \mathrm{~s}$ Emersion at 12h27m21,9s						Immersion at $11 \mathrm{~h} 05 \mathrm{~m} 47,9 \mathrm{~s}$ Emersion at 12h27m21,8s					

