Consider 2 celestial bodies **A** and **B** with geocentric coordinates (α_a, δ_a) , (α_b, δ_b) and angular velocities $(\mu \alpha_a, \mu \delta_a)$, $(\mu \alpha b, \mu \delta b)$ with all of them being functions of the Time variable "T".

At time T_0 a time assumed to be in the vicinity of their minimum geocentric angular separation these coordinates and velocities are computed as :

 $(\alpha_{a0}, \delta_{a0}, \mu\alpha_{a0}, \mu\delta_{a0})$ and $(\alpha_{b0}, \delta_{b0}, \mu\alpha_{b0}, \mu\delta_{b0})$

With $\Delta T_1 = T - T_0$ and to the 1st order :

 $\alpha_{a} = (\alpha_{a0} + \Delta T_{1} \mu \alpha_{a0}), \ \delta_{a} = (\delta_{a0} + \Delta T_{1} \mu \delta_{a0}) \ \text{and} : \alpha_{b} = (\alpha_{b0} + \Delta T_{1} \mu \alpha_{b0}), \ \delta_{b} = (\delta_{b0} + \Delta T_{1} \mu \delta_{b0})$

Define the following :

$$\Delta \alpha = (\alpha_b - \alpha_a), \ \Delta \delta = (\delta_b - \delta_a), \ \Delta \alpha_0 = (\alpha_{b0} - \alpha_{a0}), \ \Delta \delta_0 = (\delta_{b0} - \delta_{a0})$$
, and :

$$\Delta \mu_0 = (\mu \alpha b_0 - \mu \alpha_{a0}), \Delta \nu_0 = (\mu \delta_{b0} - \mu \delta_{a0}), \delta m_0 = \frac{1}{2} (\delta_{b0} + \delta_{a0}).$$

This results into the following 1st order expressions : $\Delta \alpha = (\Delta \alpha_0 + \Delta T_1 \Delta \mu_0)$ and $\Delta \delta = (\Delta \delta_0 + \Delta T_1 \Delta \nu_0)$

Then, and again to the 1^{st} order the angular distance D between *B* and *A* is :

$$D = (\Delta \alpha^2 \cos^2 \delta m_0 + \Delta \delta^2)^{\frac{1}{2}}$$

hence $D^2 = (\Delta \alpha^2 \cos^2 \delta m_0 + \Delta \delta^2)$ or : $D^2 = ([\Delta \alpha_0 + \Delta T \Delta \mu_0] \cos \delta m_0)^2 + (\Delta \delta_0 + \Delta T \Delta \nu_0)^2$

 $d/dT (D^{2}) = 2 \Delta \mu_{0} \cos \delta m_{0} \left(\left[\Delta \alpha_{0} + \Delta T_{1} \Delta \mu_{0} \right] \cos \delta m_{0} \right) + 2 \Delta \nu_{0} \left(\Delta \delta_{0} + \Delta T_{1} \Delta \nu_{0} \right)$

To get an extremum (here a minimum) for D, we need to solve for ΔT_1 in the following equation:

 $\Delta \mu_0 \cos \delta m_0 \left(\left[\Delta \alpha_0 + \Delta T_1 \Delta \mu_0 \right] \cos \delta m_0 \right) + \Delta \nu_0 \left(\Delta \delta_0 + \Delta T_1 \Delta \nu_0 \right) = 0$, which gives :

 $\Delta T_1 \left([\Delta \mu_0 \cos \delta m_0]^2 + [\Delta {\nu_0}^2] \right) = - \left(\Delta \alpha_0 \, \Delta \mu_0 \cos^2 \delta m_0 + \Delta \delta_0 \, \Delta \nu_0 \right) \text{ , to be solved as :}$

$$\Delta T_{1} = \frac{-(\alpha b_{o} - \alpha_{a0})(\mu \alpha b_{o} - \mu \alpha_{a0})\cos^{2} \frac{1}{2}(\delta b_{o} + \delta_{a0}) - (\delta b_{o} - \delta_{a})(\mu \delta b_{o} - \mu \delta_{a0})}{(\mu \alpha b_{o} - \mu \alpha_{a0})^{2}\cos^{2} \frac{1}{2}(\delta b_{o} + \delta_{a0}) + (\mu \delta b_{o} - \mu \delta_{a0})^{2}}$$

All values in blue print being known, we can easily compute ΔT_1 .

We can then update all coordinates for $T_1 = T_0 + \Delta T_1$ and iterate the entire computation, until the successive ΔT_i values become inferior to some specified value.

Then, use such updated T_i value to compute the Bodies **A** and **B** final coordinates and their minimum geocentric angular separation.

This is a quite cumbersome manual task, but it can be easily performed once the algorithm here-above has been programmed onto a Computer/Calculator with automatic chain computation of the coordinates and velocities as functions of time.

1 - 22 Jan 2023, with Venus being Body "A" and Saturn being body "B":

(1)- At Time TT₀ = 00h00m00.0s

Venus : $\alpha_{a0} = 326.50163^{\circ}$, $\delta_{a0} = -15.14220^{\circ}$, $\mu\alpha_{a0} = 0.05074^{\circ}/h$, $\mu\delta_{a0} = 0.01732$

Saturn : $\alpha_{b0} = 327.40468^{\circ}$, $\delta_{b0} = -14.46528^{\circ}$, $\mu_{\alpha_{b0}} = 0.00465^{\circ}$, $\mu_{\delta_{b0}} = 0.00159^{\circ}$

then : $\Delta \alpha_0 = (\alpha_{b0} - \alpha_{a0}) = 0.90306^\circ \ \Delta \delta_0 = (\delta_{b0} - \delta_{a0}) = 0.67692^\circ$. Get : actual D₀ = 3.977.1"

 $\Delta \mu_0 = (\mu \alpha b_0 - \mu \alpha_{a0}) = -0.04609^{\circ}/h, \\ \Delta \nu_0 = (\mu \delta_{b0} - \mu \delta_{a0}) = -0.01573^{\circ}/h, \\ \delta m_0 = \frac{1}{2} (\delta_{b0} + \delta_{a0}) = -14.80374^{\circ}$

Get : $\Delta T_1 = 22h11m23.6s$ and $T_1 = T_0 + \Delta T_1 = 22h11m23.6s$

And from angular velocities from T_0 to T_1 get **approximate D₁= 1251.9**"

(2) - <u>At Time $TT_1 = 22h11m23.6s$ </u>

Venus : $\alpha_{a1} = 327.62542^{\circ}$, $\delta_{a1} = -15.14220$, $\mu \alpha_{a1} = 0.05054^{\circ}/h$, $\mu \delta_{a1} = 0.01758$

Saturn : $\alpha_{b_1} = 327.50805^\circ$, $\delta_{b_1} = -14.42994^\circ$, $\mu \alpha_{b_1} = 0.00467^\circ$, $\mu \delta_{b_1} = 0.00160^\circ$

then : $\Delta \alpha_1 = (\alpha_{b_1} - \alpha_{a_1}) = -0.11737^\circ \Delta \delta_1 = (\delta_{b_1} - \delta_{a_1}) = 0.32510^\circ$. Get : actual D₁ = 1.239.7"

 $\Delta \mu_0 = (\mu \alpha b_1 - \mu \alpha_{a1}) = -0.04587^{\circ}/h, \Delta \nu_1 = (\mu \delta_{b1} - \mu \delta_{a1}) = -0.01598^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} + \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{a1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.59249^{\circ}/h, \delta m_1 = \frac{1}{2} (\delta_{b1} - \delta_{b1}) = -14.5926^{\circ}/h, \delta m_1 = -14.5926^{\circ}/h, \delta m_1 = -14.5926^{$

Get : $\Delta T_2 = 00h04m20.9s$ and $T_2 = T_1 + \Delta T_2 = 22h15m44.5s$

And from angular velocities from T_1 to T_2 get **approximate D₂= 1239.7**"

Successive ΔT_i / T values :

 $\Delta T_3 = 00h00m00.5s$, $T_3 = 22h15m45.0s$, estimated and actual $D_3 = 1239.7$ " $\Delta T_4 = 3 \text{ E-7 h}$, $T_4 = 22h15m45.0s$, estimated and actual $D_4 = 1239.7$ " (unchanged results)

Final result to be compared with Paul Hirose's one (minimum separation 1240.5" at 22:15:12) where most probably 99% the difference between respective results is explained by the different Ephemeris being used, with Paul's result being the most accurate one.

2 - 1978 Sep 13, Mercury – Saturn (Jean Meeus' example) also covered by Paul Hirose :

Own solution here at 15:06:53.4 TT and 3'44.2" to be compared with Paul's results : "My solution with the DE431 ephemeris quickly converges to 3'44.8" at 15:06:35 TT, compared to 3'44" at 15:06 UT by Meeus. "

Overall conclusion: Kermit's "brute force" angular velocities method here is quickly convergent for existing solutions. Was it possibly/probably published earlier or independently by someone else ???

Method described by Paul Hirose mentioned here-above is very clever and I did enjoy discovering it.

Thanks and congratulations again to you, Paul

This method was first worked out by 1987 Antoine M. "Kermit" Couëtte antoine.m.couette@club-internet.fr