Minimum Geocentric Angular Separation between of 2 moving bodies

Consider 2 celestial bodies \boldsymbol{A} and \boldsymbol{B} with geocentric coordinates $\left(\alpha_{a}, \delta_{a}\right),\left(\alpha_{b}, \delta_{b}\right)$ and angular velocities ($\mu \alpha_{a}, \mu \delta_{a}$), ($\mu \alpha b, \mu \delta b$) with all of them being functions of the Time variable " T ".

At time T_{0} a time assumed to be in the vicinity of their minimum geocentric angular separation these coordinates and velocities are computed as:

$$
\left(\alpha_{\mathrm{a} 0}, \delta_{\mathrm{a} 0}, \mu \alpha_{\mathrm{a} 0}, \mu \delta_{\mathrm{a} 0}\right) \text { and }\left(\alpha_{\mathrm{b} 0}, \delta_{\mathrm{b} 0}, \mu \alpha_{\mathrm{b}}, \mu \delta_{\mathrm{b}}\right)
$$

With $\Delta \mathrm{T}_{1}=\mathrm{T}-\mathrm{T}_{0}$ and to the $1^{\text {st }}$ order :
$\alpha_{\mathrm{a}}=\left(\alpha_{\mathrm{a} 0}+\Delta \mathrm{T}_{1} \mu \alpha_{\mathrm{a} 0}\right), \delta_{\mathrm{a}}=\left(\delta_{\mathrm{a} 0}+\Delta \mathrm{T}_{1} \mu \delta_{\mathrm{a} 0}\right)$ and $: \alpha_{\mathrm{b}}=\left(\alpha_{\mathrm{b} 0}+\Delta \mathrm{T}_{1} \mu \alpha_{\mathrm{b} 0}\right), \delta_{\mathrm{b}}=\left(\delta_{\mathrm{b} 0}+\Delta \mathrm{T}_{1} \mu \delta_{\mathrm{b} 0}\right)$
Define the following :

$$
\begin{gathered}
\Delta \alpha=\left(\alpha_{\mathrm{b}}-\alpha_{\mathrm{a}}\right), \Delta \delta=\left(\delta_{\mathrm{b}}-\delta_{\mathrm{a}}\right), \Delta \alpha_{0}=\left(\alpha_{\mathrm{b} 0}-\alpha_{\mathrm{a} 0}\right), \Delta \delta_{0}=\left(\delta_{\mathrm{b} 0}-\delta_{\mathrm{a} 0}\right), \text { and }: \\
\Delta \mu_{0}=\left(\mu \alpha \mathrm{b}_{0}-\mu \alpha_{\mathrm{a} 0}\right), \Delta v_{0}=\left(\mu \delta_{\mathrm{b} 0}-\mu \delta_{\mathrm{a} 0}\right), \delta \mathrm{m}_{0}=1 / 2\left(\delta_{\mathrm{b} 0}+\delta_{\mathrm{a} 0}\right) .
\end{gathered}
$$

This results into the following $1^{\text {st }}$ order expressions : $\Delta \alpha=\left(\Delta \alpha_{0}+\Delta \mathrm{T}_{1} \Delta \mu_{0}\right)$ and $\Delta \delta=\left(\Delta \delta_{0}+\Delta \mathrm{T}_{1} \Delta \nu_{0}\right)$
Then, and again to the $1^{\text {st }}$ order the angular distance D between \boldsymbol{B} and \boldsymbol{A} is :

$$
\begin{gathered}
\mathrm{D}=\left(\Delta \alpha^{2} \cos ^{2} \delta \mathrm{~m}_{0}+\Delta \delta^{2}\right)^{1 / 2}, \\
\text { hence } \mathrm{D}^{2}=\left(\Delta \alpha^{2} \cos ^{2} \delta \mathrm{~m}_{0}+\Delta \delta^{2}\right) \text { or }: \mathrm{D}^{2}=\left(\left[\Delta \alpha_{0}+\Delta \mathrm{T} \Delta \mu_{0}\right] \cos \delta \mathrm{m}_{0}\right)^{2}+\left(\Delta \delta_{0}+\Delta \mathrm{T} \Delta v_{0}\right)^{2} \\
\mathrm{~d} / \mathrm{dT}\left(\mathrm{D}^{2}\right)=2 \Delta \mu_{0} \cos \delta \mathrm{~m}_{0}\left(\left[\Delta \alpha_{0}+\Delta \mathrm{T}_{1} \Delta \mu_{0}\right] \cos \delta \mathrm{m}_{0}\right)+2 \Delta v_{0}\left(\Delta \delta_{0}+\Delta \mathrm{T}_{1} \Delta \nu_{0}\right)
\end{gathered}
$$

To get an extremum (here a minimum) for D , we need to solve for $\Delta \mathrm{T}_{1}$ in the following equation:

$$
\begin{gathered}
\Delta \mu_{0} \cos \delta \mathrm{~m}_{0}\left(\left[\Delta \alpha_{0}+\Delta \mathrm{T}_{1} \Delta \mu_{0}\right] \cos \delta \mathrm{m}_{0}\right)+\Delta \nu_{0}\left(\Delta \delta_{0}+\Delta \mathrm{T}_{1} \Delta \nu_{0}\right)=0, \text { which gives : } \\
\Delta \mathrm{T}_{1}\left(\left[\Delta \mu_{0} \cos \delta \mathrm{~m}_{0}\right]^{2}+\left[\Delta \nu_{0}^{2}\right]\right)=-\left(\Delta \alpha_{0} \Delta \mu_{0} \cos ^{2} \delta \mathrm{~m}_{0}+\Delta \delta_{0} \Delta \nu_{0}\right), \text { to be solved as : } \\
\Delta \mathrm{T}_{1}=\frac{-\left(\boldsymbol{\alpha} \mathrm{b}_{0}-\alpha_{\mathrm{a} 0}\right)\left(\mu \boldsymbol{\alpha} \mathrm{b}_{0}-\mu \alpha_{\mathrm{a} 0}\right) \cos ^{2} 1 / 2\left(\delta \mathrm{~b}_{0}+\delta_{\mathrm{a} 0}\right)-\left(\delta \mathrm{b}_{0}-\delta_{\mathrm{a}}\right)\left(\mu \delta \mathrm{b}_{0}-\mu \delta_{\mathrm{a} 0}\right)}{\left(\mu \alpha \mathrm{b}_{0}-\mu \alpha_{\mathrm{a} 0}\right)^{2} \cos ^{2} 1 / 2\left(\delta \mathrm{~b}_{0}+\delta_{\mathrm{a} 0}\right)+\left(\mu \delta \mathrm{b}_{0}-\mu \delta_{\mathrm{a} 0}\right)^{2}}
\end{gathered}
$$

All values in blue print being known, we can easily compute $\Delta \mathrm{T}_{1}$.
We can then update all coordinates for $\mathrm{T}_{1}=\mathrm{T}_{0}+\Delta \mathrm{T}_{1}$ and iterate the entire computation, until the successive $\Delta \mathrm{T}_{i}$ values become inferior to some specified value.

Then, use such updated T_{i} value to compute the Bodies \mathbf{A} and \boldsymbol{B} final coordinates and their minimum geocentric angular separation.

This is a quite cumbersome manual task, but it can be easily performed once the algorithm here-above has been programmed onto a Computer/Calculator with automatic chain computation of the coordinates and velocities as functions of time.

Two examples are given here-after on the same cases treated by Paul Hirose at: http://fer3.com/arc/m2.aspx/Upcoming-Planets-2023-close-encounters-Hirose-feb-2023-g53946

Venus : $\alpha_{\mathrm{a} 0}=326.50163^{\circ}, \delta_{\mathrm{a} 0}=-15.14220^{\circ}, \mu \alpha_{\mathrm{a} 0}=0.05074{ }^{\circ} / \mathrm{h}, \mu \delta_{\mathrm{a} 0}=0.01732$
Saturn : $\alpha_{b 0}=327.40468^{\circ}, \delta_{b 0}=-14.46528^{\circ}, \mu \alpha_{b_{0}}=0.00465^{\circ}, \mu \delta_{b o}=0.00159^{\circ}$
then : $\Delta \alpha_{0}=\left(\alpha_{b_{0}}-\alpha_{a 0}\right)=0.90306^{\circ} \Delta \delta_{0}=\left(\delta_{b_{0}}-\delta_{\mathrm{a} 0}\right)=0.67692^{\circ}$. Get : actual $\mathrm{D}_{0}=3.977 .1^{\prime \prime}$
$\Delta \mu_{0}=\left(\mu \alpha \mathrm{b}_{0}-\mu \alpha_{\mathrm{a} 0}\right)=-0.04609^{\circ} / \mathrm{h}, \Delta \nu_{0}=\left(\mu \delta_{\mathrm{b}-}-\mu \delta_{\mathrm{a} 0}\right)=-0.01573^{\circ} / \mathrm{h}, \delta \mathrm{m}_{0}=1 / 2\left(\delta_{\mathrm{b} 0}+\delta_{\mathrm{a} 0}\right)=-14.80374^{\circ}$
Get : $\Delta \mathrm{T}_{1}=22 \mathrm{~h} 11 \mathrm{~m} 23.6 \mathrm{~s}$ and $\mathrm{T}_{1}=\mathrm{T}_{0}+\Delta \mathrm{T}_{1}=22 \mathrm{~h} 11 \mathrm{~m} 23.6 \mathrm{~s}$
And from angular velocities from T_{0} to T_{1} get approximate $D_{1}=1251.9$ "
(2)- At Time TT ${ }_{1}=22 \mathrm{~h} 11 \mathrm{~m} 23.6 \mathrm{~s}$

Venus : $\alpha_{\mathrm{a} 1}=327.62542^{\circ}, \delta_{\mathrm{a} 1}=-15.14220, \mu \alpha_{\mathrm{a} 1}=0.05054^{\circ} / \mathrm{h}, \mu \delta_{\mathrm{a} 1}=0.01758$
Saturn : $\alpha_{b_{1}}=327.50805^{\circ}, \delta_{b_{1}}=-14.42994^{\circ}, \mu \alpha_{b_{1}}=0.00467^{\circ}, \mu \delta_{b_{1}}=0.00160^{\circ}$
then : $\Delta \alpha_{1}=\left(\alpha_{b_{1}}-\alpha_{a 1}\right)=-0.11737^{\circ} \Delta \delta_{1}=\left(\delta_{b_{1}}-\delta_{a 1}\right)=0.32510^{\circ}$. Get : actual $D_{1}=1.239 .7^{\prime \prime}$
$\Delta \mu_{0}=\left(\mu \alpha b_{1}-\mu \alpha_{a_{1}}\right)=-0.04587^{\circ} / \mathrm{h}, \Delta v_{1}=\left(\mu \delta_{b_{1}}-\mu \delta_{a_{1}}\right)=-0.01598^{\circ} / \mathrm{h}, \delta \mathrm{m}_{1}=1 / 2\left(\delta_{b_{1}}+\delta_{a 1}\right)=-14.59249^{\circ}$
Get : $\Delta \mathrm{T}_{2}=00 \mathrm{~h} 04 \mathrm{~m} 20.9 \mathrm{~s}$ and $\mathrm{T}_{2}=\mathrm{T}_{1}+\Delta \mathrm{T}_{2}=22 \mathrm{~h} 15 \mathrm{~m} 44.5 \mathrm{~s}$
And from angular velocities from T_{1} to T_{2} get approximate $D_{2}=1239.7^{\prime \prime}$

Successive $\Delta T_{i} / T$ values :

$\Delta \mathrm{T}_{3}=00 \mathrm{~h} 00 \mathrm{~m} 00.5 \mathrm{~s}, \mathrm{~T}_{3}=22 \mathrm{~h} 15 \mathrm{~m} 45.0 \mathrm{~s}$, estimated and actual $\mathrm{D}_{3}=1239.7^{\prime \prime}$
$\Delta \mathrm{T}_{4}=3 \mathrm{E}-7 \mathrm{~h}, \quad \mathrm{~T}_{4}=22 \mathrm{~h} 15 \mathrm{~m} 45.0 \mathrm{~s}$, estimated and actual $\mathrm{D}_{4}=1239.7$ " (unchanged results)
Final result to be compared with Paul Hirose's one (minimum separation 1240.5" at 22:15:12) where most probably 99% the difference between respective results is explained by the different Ephemeris being used, with Paul's result being the most accurate one.

2-1978 Sep 13, Mercury - Saturn (Jean Meeus' example) also covered by Paul Hirose :

Own solution here at 15:06:53.4 TT and 3 ' 44.2 " to be compared with Paul's results : "My solution with the DE431 ephemeris quickly converges to $3^{\prime \prime 44.8 " ~ a t ~ 15: 06: 35 ~ T T, ~ c o m p a r e d ~ t o ~ 3 ' 44 " ~}$ at 15:06 UT by Meeus. "

Overall conclusion: Kermit's "brute force" angular velocities method here is quickly convergent for existing solutions. Was it possibly/probably published earlier or independently by someone else ???

Method described by Paul Hirose mentioned here-above is very clever and I did enjoy discovering it.
Thanks and congratulations again to you, Paul

