After selecting Body, visualize that you are standing at the center of a 12 hour clock face and the vertical circle from your zenith passing through Body, intersects the horizon at the 12 o'clock position. Select Body 2 from a 'clock position, this will produce the optimum crossing angle of about 90° at the intersection of the 2 LOPs.

\qquad GMT 19:40:00 GHA $_{1}$ $\mathrm{GHA}_{1} \quad 328$ \square Enter Data
Dec_{1} \qquad

$\mathrm{Ho}_{1} \quad 38$ deg. $\quad 23.4 \mathrm{~m}$
Body ${ }_{1}$ is ENE of the observer
Radius of the Circle of Equal Altitude $\quad 3097 \mathrm{n}$. mi.

A Circle of Equal Altitude

Circle of Equal Altitude is centered at the Geographic Position(GP) of a Body. The Latitude of the body's GP is defined by the body's Declination(Dec). The Longitude of the body's GP can be determined from the body's Greenwich Hour Angle (GHA). The radius of a Circle of Equal Altitude in nautical miles is $60 \times\left(90^{\circ}-\mathrm{Ho}\right)$. When two bodies are observed, the two A Line of Position (LOP) is a short segment from a Circle of Equal Altitude.
Body_{2} \qquad
\qquad
\qquad GMT 19:40:00
GHA_{2} \qquad 41.74 min
Dec_{2} \qquad $\quad 14.34 \mathrm{~min}$.
$\mathrm{H}_{2} \quad 50$ deg. $\quad 56.24$ min
Body ${ }_{2}$ is SSE of the observer
Radius of the Circle of Equal Altitude $\quad 2344 \mathrm{n} . \mathrm{mi}$.

Intersections of Circles of Equal Altitude
This worksheet assumes all sights were his worksheet assumes all sights were

