<u>An all-haversine method for manual calculation of zenith distance, without multiplication</u> Lars Bergman, 18 November 2015

As shown before (by Hanno and Greg)

hav z = N + (1 - Q)hav(lha)

where N = hav(lat - dec), P = hav(lat + dec) and Q = N + P

The multiplication of two 4-figure numbers in the second term is the error-prone part of the solution. Is it possible to get rid of this multiplication? By expanding above expression we get

hav z = hav(lat - dec) + hav(lha) - hav(lat - dec)hav(lha) - hav(lat + dec)hav(lha)

After some manipulation we'll find that the product of two haversines is

$$hav(x)hav(y) = \frac{1}{2}\left(hav(x) + hav(y) - \frac{hav(x+y) + hav(x-y)}{2}\right)$$

Thus we get, after some further manipulation

hav z
=
$$\frac{1}{2} \left[hav(lat - dec) - hav(lat + dec) + hav(lat - dec - lha) + hav(lat + dec + lha) + hav(lat + dec - lha) + hav(lat + dec$$

By defining an additional four parameters

Np = hav(lat - dec + lha) Nn = hav(lat - dec - lha) Pp = hav(lat + dec + lha)Pn = hav(lat + dec - lha)

we get the simple expression

$$hav(z) = \frac{1}{2} \left(N - P + \frac{Np + Nn + Pp + Pn}{2} \right)$$

Now the difficult multiplication is replaced by two simple "divide by 2", but the price we pay is the calculation of a few more angles and looking up their haversines; nothing is for free!

An example using Hanno's table of 10^4 hav(x)

lat	59° 18'		
dec	<u>-19 13</u>		
	78 31	N=4004.5	
lha	<u>27 45</u>		
	106 16		Np=6401
	50 46		Nn=1838
	40 5	P=1174.5	
	67 50		<i>Pp</i> =3113
	12 20		Pn= 115
		2830 (diff)	11467 (sum)
			5734 (div by 2)
			<u>2830 (N-P)</u>
			8564 (add)
			4282 (div by 2) giving $z=81^{\circ} 45$ ' and thus altitude $= 8^{\circ} 15$ '