Define

$a \quad$ semi-major axis of the orbit
$e \quad$ orbital eccentricity
$s \quad$ Sun's radius
v the true anomaly
P the Earth's orbital period
then the semi-minor axis of the orbit is $b=a \sqrt{1-e^{2}}$
and the Sun-Earth distance is $r=\frac{a\left(1-e^{2}\right)}{1+e \cos v}$ which takes extreme values $r_{\max }=a(1+e)$, $r_{\text {min }}=a(1-e)$.

From conservation of angular momentum or equivalently Kepler's second law it can be shown that $\frac{P}{2 \pi a^{2} \sqrt{1-e^{2}}} r^{2} d v=d t$.

In the approximation $\sin ^{-1} \frac{s}{r} \approx \frac{s}{r}$ The time averaged semidiameter is
$\frac{1}{P} \int_{0}^{P} \frac{s}{r} d t=\frac{s}{2 \pi a^{2} \sqrt{1-e^{2}}} \int_{0}^{2 \pi} r d \nu=\frac{s}{a}$.
The average of the maximum and minimum semidiameters is $\frac{1}{2}\left(\frac{s}{r_{\max }}+\frac{s}{r_{\min }}\right)=\frac{s}{a\left(1-e^{2}\right)}$.
Proportion of time with $r>a$
Use $r=\frac{a\left(1-e^{2}\right)}{1-e \cos \theta}$ where $\theta=0$ corresponds to aphelion Then $r=a$ when $\cos \theta=e$. The area
swept out while $r \geq a$ is $2 \int_{0}^{\cos ^{-1} e} \frac{r^{2}}{2} d \theta=-2 \int_{1}^{e}\left(\frac{a\left(1-e^{2}\right)}{1-e u}\right)^{2} \frac{1}{2 \sqrt{1-u^{2}}} d u=a^{2} \sqrt{1-e^{2}}\left(e+\frac{\pi}{2}\right)$
where the substitution $u=\cos \theta$ has been made. The total area of the ellipse is $\pi a b=\pi a^{2} \sqrt{1-e^{2}}$ so the proportion is $\frac{1}{2}+\frac{e}{\pi}$.

