Conditions for Positive Altitudes in Bygrave/MHR1 Calculations

In general for an observer at latitude, L, the altitude, h, of a celestial body with declination, δ, and local hour angle, LHA, is given by

$$
\sin h=\sin \delta \sin L+\cos \delta \cos L \cos \mathrm{LHA}
$$

From this it follows that the object is on the horizon $(h=0)$ when

$$
\cot \left(90^{\circ}-L\right)=-\cot \delta \cos \mathrm{LHA}
$$

But ignoring the minus sign this is just the calculation used in the procedure for finding y in the Bygrave instructions (x in the MHR1). So y represents the limiting colatitude at which a celestial body of given declination and altitude is just on the horizon.

By considering the various possible combinations of parameters it is found that the altitude obtained from using a Bygrave or MHR1 is positive (i.e. above the horizon or zenithal distance $\mathrm{ZD}<90^{\circ}$) if and only if any one of three conditions is satisfied

Bygrave Notation

\mathbf{L} and \mathbf{d}	\mathbf{H}	c and \mathbf{y}
same name	less than 90°	No restriction
	greater than 90°	$\mathrm{Y}=\mathrm{c}+\mathrm{y}$ less than 180°
contrary name	less than 90°	c greater than y

MHR1 Notation

$\boldsymbol{\varphi}$ and $\boldsymbol{\delta}$	\mathbf{t}	b and \mathbf{x}
same name	less than 90°	No restriction
	greater than 90°	$\mathrm{y}=\mathrm{b}+\mathrm{x}$ less than 180°
contrary name	less than 90°	b greater than x

$\boldsymbol{\varphi}$ und $\boldsymbol{\delta}$	\mathbf{t}	b und \mathbf{x}
gleichnamig	kleiner 90°	keine Einschränkung
	größer 90°	$\mathrm{y}=\mathrm{b}+\mathrm{x}$ kleiner 180°
ungleichnamig	kleiner 90°	b größer x

The conditions look asymmetric due to the practice of not retaining signs in the Bygrave/MHR1 calculations. Subtractions always produce positive values. It also uses the convention that the hour angle falls in the range 0° to 180° and is qualified as being E or W rather than a value in the range 0° to 360° as is common practice today. In more modern notation and assuming the sign in the Bygrave variable Y (MHR1 variable y) was kept these conditions can be written

L and d	$\boldsymbol{\operatorname { c o s }}(\mathbf{H})$	\mathbf{Y}
same sign	+	No restriction
	-	$\mathrm{Y}<180^{\circ}$
opposite sign	+	$\mathrm{Y}>0^{\circ}$

