Chapter 8

Celestial Concepits
 Introduction

Celestial navigation is a universal aid to dead reckoning (DR). Because it is available worldwide and is independent of electronic equipment, it is a very reliable method of fixing the position of the aircraft. It cannot be jammed and emanates no signals. Each celestial observation yields one line of position (LOP). In the daytime, when the sun may be the only visible celestial body, a single LOP may be all you can get. At night, when numerous bodies are available, LOPs obtained observing two or more bodies may be crossed to determine a fix.

It is impossible to predict, in so many miles, the accuracy of a celestial fix. Celestial accuracy depends on the navigator's skill, the type and condition of the equipment, and the weather. With the increase in aircraft speed and range, celestial navigation is very demanding. Fixes must be plotted and used as quickly as possible.

You do not have to be an astronomer or mathematician to establish a celestial LOP. Your ability to use a sextant is a matter of practice, and specially designed celestial tables have reduced the computations to simple arithmetic.

Although you do not need to understand astronomy in detail to establish an accurate celestial position, celestial work and celestial LOPs mean more if you understand the basics of celestial astronomy. Celestial astronomy includes the navigational bodies in the universe and their relative motions. Although there are an infinite number of heavenly bodies, celestial navigation utilizes only 63 of them: 57 stars, the moon, the sun, Venus, Jupiter, Mars, and Saturn.

Assumptions

We make certain assumptions to simplify celestial navigation. These assumptions help you obtain accurate LOPs without a detailed knowledge of celestial astronomy. However, celestial positioning is more than extracting numbers from various books. A working knowledge of celestial concepts helps you crosscheck your computations.

First, assume the earth is a perfect sphere. That puts every point on the earth's surface equidistant from the center, forming the terrestrial sphere. Next, assume the terrestrial sphere is the center of an infinite universe. Finally, assume all other bodies, except the moon, are an infinite distance from the terrestrial sphere. Imagine them on the inside surface of an enormous concentric sphere, the celestial sphere. If the stars, planets, and sun are infinitely distant from the earth's center, then the earth's surface (or aircraft's altitude) is approximately the center of the universe.

Ptolemy proposed the celestial concept of the universe in AD 127. He said the earth is the center of the universe, and all bodies rotate about the earth from east to west. In the relatively short periods of time involved with celestial positioning, you can assume that all bodies on the celestial sphere rotate at the same rate. In actuality, over months or years, the planets move among the stars at varying rates.

Establishing an artificial celestial sphere with an infinite radius simplifies computations for three celestial spheres has a corresponding point on the terrestrial sphere and; conversely, every point on the terrestrial sphere has a corresponding point on the celestial sphere.

Second, the celestial sphere's infinite radius dwarfs variations in the observer's location. An infinite radius means all light rays from the celestial body arrive parallel, so the angle is the same whether viewed at the earth's center, on the surface, or at the aircraft's altitude.

Third, the relationships are valid for all bodies on the celestial sphere. Because the moon is relatively close to the earth, it must be treated differently. With certain corrections, the moon still provides an accurate LOP. This is addressed in Chapter 10, Celestial Precomputation.

Because the celestial sphere and terrestrial sphere are concentric, each sphere contains an equator, two poles, meridians, and parallels of latitude or declination. The observer on earth has a corresponding point directly overhead on the celestial sphere called the zenith. A celestial body has a corresponding point on the terrestrial sphere directly below it called the subpoint or geographic position. At the subpoint, the light rays from the body are perpendicular to the earth's surface. [Figures 8-1 and 8-2]

Figure 8-1. Celestial points and subpoints on earth have the same relationship.

Figure 8-2. Elements of the celestial sphere.

Consistent with the celestial assumptions, the earth and the celestial meridians do not rotate. All bodies on the celestial sphere rotate 15° per hour past the celestial meridians. The moon moves at approximately 14.5° per hour.

Motion of Celestial Bodies

All the celestial bodies have two types of motion: absolute and apparent. Apparent motion is important to navigators. Apparent motion is the motion of one celestial body as perceived by an observer on another moving celestial body. Since apparent motion is relative, it is essential to establish the reference point for that motion. For example, the apparent motion of Venus would be different if observed from the earth or the sun.

Apparent Motion

The earth's rotation and revolution causes the apparent motion of the celestial bodies. Rotation causes celestial bodies to appear to rise in the east, climb to a maximum height, then set in the west. All bodies appear to move along a diurnal circle, approximately parallel to the plane of the equator.

The apparent effect of rotation varies with the observer's latitude. At the equator, the bodies appear to rise and set perpendicular to the horizon. Each body is above the horizon for approximately 12 hours each day. At the North and South Poles, a different phenomenon occurs. The same group of stars is continually above the horizon; they neither rise nor set, but move on a plane parallel to the equator. This characteristic explains the periods of extended daylight, twilight, and darkness at higher latitudes. The remainder of the earth is a combination of these two extremes; some bodies rise and set, while others continually remain above the horizon.

The greater the northerly declination (Dec) of a body, the higher it appears in the sky to an observer at the North Pole. Polaris, with a Dec of almost 90°, appears overhead. Bodies with southern Dec are not visible from the North Pole.

A circumpolar body appears to revolve about the pole and never set. If the angular distance of the body from the elevated pole is less than the observer's latitude, the body is circumpolar. For example, the Dec of Dubhe is $62^{\circ} \mathrm{N}$. Therefore, it is located at an angle of $90^{\circ}-62^{\circ}$ from the North Pole, or 28°. So, an observer located above $28^{\circ} \mathrm{N}$ views Dubhe as circumpolar. Although Figure 8-3 uses the North Pole, the same characteristics can be observed from the South Pole.

If the earth stopped rotating, the effect of the earth's revolution on the apparent motion of celestial bodies would be obvious. The sun would appear to circle around the earth once each year. It would cover 360° in 365 days or move eastward at slightly less than 1 degree per day. The stars would move at the same rate. That is why different constellations are visible at different times of the year. Every evening, the same star appears to rise 4 minutes earlier.

Figure 8-3. Some bodies are circumpolar.
After half a year, when the earth reached the opposite extreme of its orbit, its dark side would be turned in the opposite direction in space, facing a new field of stars. Hence, an observer at the equator would see an entirely different sky at midnight in June, than the one that appeared at midnight in December. In fact, the stars seen at midnight in June are those that were above the horizon at midday in December.

Seasons

The annual variation of the sun's declination and the consequent change of the seasons are caused by the revolution of the earth. [Figure 8-4] If the celestial equator coincided with the ecliptic, the sun would always be overhead at the equator, and its Dec would always be zero. However, the earth's axis is inclined about 66.5° to the plane of the earth's orbit, and the plane of the equator is inclined about 23.5°. Throughout the year, the axis points in the same direction. That is, the axis of the earth in one part of the orbit is parallel to the axis of the earth in any other part of the orbit. [Figure 8-5]

In June, the North Pole is inclined toward the sun so that the sun is at a maximum distance from the plane of the equator. About June 22, at the solstice, the sun has its greatest northern Dec.

The solstice brings the long days of summer, while in the Southern Hemisphere, the days are shortest. This is the beginning of summer for the Northern Hemisphere and of winter for the Southern Hemisphere. Six months later, the axis is still pointing in the same direction; but, since the earth is at the opposite side of its orbit and the sun, the North Pole is inclined away from the Sun. At the winter solstice, about

Figure 8-4. Seasonal changes of earth's position.

Figure 8-5. Ecliptic with solstices and equinoxes.
December 21, the sun has its greatest southern Dec. Days are shortest in the Northern Hemisphere, and winter is beginning.

Halfway between the two solstices, the axis of the earth is inclined neither toward nor away from the sun, and the sun is on the plane of the equator. These positions correspond to the beginning spring and fall.

Celestial Coordinates

Celestial bodies and the observer's zenith may be positioned on the celestial sphere using a coordinate system similar to that of the earth. Terrestrial lines of latitude correspond to celestial parallels of Dec. Lines of longitude establish the celestial meridians.

The observer's celestial meridian is a great circle containing the zenith, the nadir, and the celestial poles. [Figure 8-2] A line extended from the observer's zenith, through the center of the earth, intersects the celestial sphere at the observer's nadir, the point on the celestial sphere directly beneath the observer's position. The poles divide the celestial meridians into upper and lower branches. The upper branch contains the observer's zenith. The lower branch contains the nadir.

A second great circle on the celestial sphere is the hour circle. The hour circle contains the celestial body and the celestial poles. Unlike celestial meridians, which remain stationary, hour circles rotate 15° per hour. Hour circles also contain upper and lower branches. The upper branch contains the body. Again, the moon's hour circle moves at a different rate. The subpoint is the point on the earth's surface directly beneath the celestial body.

You can locate any body on the celestial sphere relative to the celestial equator and the Greenwich meridian using Dec and Greenwich hour angle.

Declination (Dec)

Dec is the angular distance a celestial body is north or south of the celestial equator measured along the hour circle. It ranges from 0° to 90° and corresponds to latitude.

Greenwich Hour Angle (GHA)

GHA is the angular distance measured westward from the Greenwich celestial meridian to the upper branch of the hour circle. It has a range of 0° to 360°. The Air Almanac lists the GHA and the Dec of the sun, moon, four planets, and Aries. The subpoint's latitude matches its Dec, and its longitude correlates to its GHA, but not exactly. GHA is always measured westward from the Greenwich celestial meridian, and longitude is measured in the shortest direction from the Greenwich meridian to the observer's meridian.

The following are examples of converting a body's celestial coordinates to its subpoint's terrestrial coordinates. If the GHA is less than 180°, then the subpoint is in the Western Hemisphere and GHA equals longitude. When the GHA is greater than 180°, the subpoint is in the Eastern Hemisphere and longitude equals $360^{\circ} \mathrm{GHA}$. Again, Dec and latitude are equal. [Figure 8-6]

You will use two other hour angles in celestial navigation in addition to GHA, local hour angle (LHA), and sidereal hour angle (SHA). [Figure 8-7] LHA is the angular distance from the observer's celestial meridian clockwise to the hour circle. LHA is computed by applying the local longitude to the GHA of the body. In the Western Hemisphere, LHA equals GHA - W Long, and in the Eastern Hemisphere, LHA equals GHA + E Long. [Figure 8-8] When the LHA is 0 , the body's hour circle and the upper branch of the observer's celestial meridian are collocated, and the body is in transit. If the LHA is 180 , the hour circle is coincident with the lower branch of the observer's celestial meridian. SHA is used with the first point of Aries. The first point of Aries is the point where the sun appears to cross the celestial equator from south to north on the vernal equinox or first day of spring. Though not absolutely stationary relative to the

Figure 8-6. Declination of a body corresponds to a parallel of latitude.

Figure 8-7. Greenwich hour angle.

Figure 8-8. Local hour angle.
stars, Aries moves so slowly that we consider it fixed on the celestial equator for as long as a year. The SHA is the angular measurement from the hour circle of Aries to the star's hour circle. [Figure 8-9] Aries and the stars move together so the SHA remains constant for a year.

Use of the Air Almanac

Although the Air Almanac contains astronomical amounts of data, most of it is devoted to tabulating the GHA of Aries and the GHA and Dec of the sun, moon, and the three navigational planets most favorably located for observation. Enter the daily pages with Greenwich date and GMT to extract the GHA and Dec of a celestial body.

Finding GHA and Dec

The GHA is listed for 10 -minute intervals on each daily sheet. If the observation time is listed, read the GHA and Dec directly under the proper column opposite the time.

For example, find the sun's GHA and Dec at GMT 0540 on 11 August 1995. [Figure 8-10] The GHA is $263^{\circ}-41^{\prime}$ and Dec is $\mathrm{N} 15^{\circ}-24^{\prime}$. (Extractions of GHA and Dec are to the nearest whole minute.) To convert these values to the subpoint's geographical coordinates, latitude is North $15^{\circ}-24^{\prime}$. When GHA is greater than 180°, subtract it from 360° to get east longitude. The subpoint's longitude in this example is $\left(360^{\circ}-00^{\prime}\right.$ minus $\left.263^{\circ}-41^{\prime}\right)$ East $96^{\circ}-19^{\prime}$.

When you do not observe at a 10-minute interval, use the time immediately before the observation time. Then, use the Interpolation of GHA table on the inside front cover of the Air Almanac or the back of the star chart and add the increment to the GHA. [Figure 8-11]

For example, on 11 August 1995, you observe the sun at 1012 GMT. Enter Figure 8-10 to find the GHA listed for $1010\left(331^{\circ}-11^{\prime}\right)$. Since the observation was 2 minutes after

Figure 8-9. Sidereal hour angle.
(DAY 223) Greenwich A.M. 1995 August 11 (Friday)

Figure 8-10. Daily page from Air Almanac-11 August 1995.

Figure 8-11. Interpolation of Greenwich hour angle, Air Almanac.
the listed time, enter the Interpolation of GHA table and find the correction listed for 2 minutes of time (30'). [Figure 8-11] Add this correction to the listed GHA to determine the sun's exact GHA at $1012\left(331^{\circ}-41^{\prime}\right)$. The Dec for the same time is $\mathrm{N} 15^{\circ}-21^{\prime}$. Thus, at the time of the observation, the subpoint of the sun is at latitude $15^{\circ}-21^{\prime} \mathrm{N}$, longitude $\left(360^{\circ}-00^{\prime}\right.$ minus $\left.331^{\circ}-41^{\prime}\right) 028^{\circ}-19^{\prime} \mathrm{E}$.

For example, at 0124 GMT on 11 August 1995, you observe Altair. To find the GHA and Dec, look at the extracts from the tables in Figures 8-11 and 8-12.

You can find the GHA and Dec of a planet in almost the same way as the sun. Because the planet's Dec change slowly, they are recorded only at hourly intervals. Use the Dec listed for the entire hour. For example, to find the GHA and Dec of Jupiter at 1109 GMT, 11 August 1995, enter the correct daily page for the time of 1100 GMT. [Figure 8-10] The GHA is $240^{\circ}-35^{\prime}$ and the Dec is $\mathrm{S} 20^{\circ}-40^{\prime}$. Enter the Interpolation of GHA table under sun, etc., to get the adjustment for 9 minutes of time, $2^{\circ}-15^{\prime}$. [Figure 8-11] Therefore, GHA is $242^{\circ}-50^{\prime}$. Jupiter's subpoint is at latitude $20^{\circ}-40^{\prime} \mathrm{S}$, longitude $\left(360^{\circ}-00^{\prime}\right.$ minus $\left.242^{\circ}-50^{\prime}\right) 117^{\circ}-10^{\prime} \mathrm{E}$.

If you need to find an accurate GHA and Dec without the Air Almanac, you can find the procedures and applicable tables in Publication No. 249, Volume 1 for Aries or Volume 2 or 3 for the sun.

Finding GHA and Dec of Moon

The moon moves across the sky at a different rate than other celestial bodies. In the Interpolation of GHA table, the intervals for the moon are listed in the right column where the values for the sun, Aries, and the planets are in the left column.

The interpolation of GHA table is a critical table and the increment is opposite the interval in which the difference of GMT occurs. If the difference (for example, 06'-3 1" for the moon) is an exact tabular value, take the upper, or right, of the two possible increments (that is, $1^{\circ}-34^{\prime}$). The up, or right, rule applies to all critical tables.

For example, at 1136 GMT on 11 August 1995, you observe the moon. The following information is from the Air Almanac [Figures 8-10 and 8-11]:

GHA of moon at 1130 GMT $163^{\circ} 16^{\prime}$

GHA correction for 6 minutes $1^{\circ} 27^{\prime}$
GHA $164^{\circ} 43^{\prime} \operatorname{Dec} \mathrm{S} 8^{\circ} 00^{\prime}$

Thus, at 1136 Z , the moon's subpoint is located at $S 8^{\circ}-00^{\prime}$, longitude $164^{\circ}-43^{\prime} \mathrm{W}$.

Finding GHA and Dec of a Star

The stars and the first point of Aries remain fixed in their relative positions in space, so the gas of the stars and Aries change at the same rate. Rather than list the GHA and Dec of every star throughout the day, the Air Almanac lists the GHA of Aries at 10-minute intervals and gives the sidereal hour angle (SHA) of the stars. The GHA of a star for any time can be found by adding the GHA of Aries and the SHA of the star. The GHA of a star is used to precomp any star that falls within $29^{\circ}(\mathrm{Dec})$ of the equator using Volume 2 or Volume 3.

Figure 8-12. Sidereal hour angle obtained from table.
The table, STARS, is inside the front cover of the almanac and on the back of the star chart. This table lists navigational stars and the following information for each star: the number corresponding to the sky diagram in the back, the name, the magnitude or relative brightness, the SHA, the Dec, whether used in Publication No. 249, and stars that can be used with Dec tables. NOTE: If you need a higher degree of accuracy, the SHA and Dec of the stars are listed to tenths of a degree in the Air Almanac's appendix. Thus, the subpoint of Altair is $08^{\circ}-52^{\prime} \mathrm{N} 042^{\circ}-24^{\prime} \mathrm{W}$.

All the celestial concepts and assumptions you have learned may help you obtain a cestial LOP. A celestial LOP is simply a circle plotted with the center at the subpoint and a radius equal to the distance from the observer to the subpoint. To accurately compute this distance and the direction to the subpoint of the body, you must initially position the subpoint and then measure the angular displacement of the body above the horizon. GHA and Dec position the body, and the sextant measures the height above the horizon. A basic knowledge of celestial theory and LOPs will help you appreciate celestial navigation and detect errors. The next section explains how angular displacement is measured.

Celestial Horizon

You use a sextant to measure a body's angular displacement above the horizon. The celestial horizon is a plane passing through the earth's center perpendicular to the zenith-nadir axis. The visual horizon approximates this plane at the earth's surface. Figure 8-13 depicts the zenith-nadir axis and the celestial horizon. The angular displacement you see through

Figure 8-13. Celestial horizon is 90° from observer Zenith and Nadir.
a sextant is the height observed (Ho). Ho is measured along the vertical circle above the horizon. The vertical circle is a great circle containing the zenith, nadir, and celestial body. The body's altitude is the same whether measured at the earth's surface from an artificial horizon or at the center of the earth from the celestial horizon, because these horizons are parallel and the light rays from the body are essentially parallel. Figure 8-14 shows that the infinite celestial sphere makes the difference in angle for light rays arriving at different points on the earth infinitesimal.

Figure 8-14. Parallel lines make equal angles with parallel planes.
The angle between light rays is called parallax. In Figure 8-15, parallax is shown at its maximum; that is, when the observer and the subpoint are separated by 90°. Since the earth's radius is tiny compared to the infinite distance to the stars, the angle p is very small. For the sun, angle p is a negligible 9 seconds of arc or 0.15 nautical miles (NM). Observed altitudes from either the artificial or celestial horizon are practically the same.

Figure 8-15. Parallax.

The bubble in a sextant or artificial horizon is most used by navigators. As in a carpenter's level, a bubble indicates the apparent vertical and horizontal. With the bubble, the navigator can level the sextant and establish an artificial horizon parallel to the plane of the celestial horizon. Figure 8-16 shows that the plane of the artificial (bubble) horizon and the plane of the celestial horizon are parallel and separated by the earth's radius. Compared to the vast distances of space, the radius of the earth is inconsequential. Thus, the artificial horizon and the celestial horizon are nearly identical.

Figure 8-16. The two planes are parallel.

Observed Altitude

The distance of the observer from the subpoint and a body's Ho are related. [Figure 8-17] When the body is directly overhead, the Ho is 90°, and the subpoint and the observer's position are collocated. When the Ho is 0°, the body is on the horizon and the subpoint is $90^{\circ}(5,400 \mathrm{NM})$ from the observer's position. (See Figure 8-18, where C is the center of the earth, AB is the observer's horizon, and S is the subpoint of the body.) Since the sum of the angles in a triangle equals 180°, the angle OX is equal to $180^{\circ}-(\mathrm{Ho}+\mathrm{P})$. The sum of the angles on a straight line equals 180°, so angle OXC is equal to $\mathrm{Ho}+\mathrm{P}$. The horizon AB being tangent to the earth at O is perpendicular to OC, a radius of the earth. Thus, angle OCX equals $90^{\circ}(\mathrm{Ho}+\mathrm{P})$. The preceding discussion showed that

Figure 8-17. Measure altitude from celestial horizon along vertical circle.

Figure 8-18. Finding observed altitude.
angle P is negligible, so this angle becomes $90^{\circ}-\mathrm{Ho}$. The arc on the surface subtended by the angle OCX at the center of the earth is arc OS. This arc then is equal to $90^{\circ}-\mathrm{Ho}$.

The distance from the subpoint to the observer is the zenith distance or co-alt and is computed using the astronomical triangle described in Chapter 9. Basically, the zenith distance equals 90° minus the Ho. [Figure 8-19] The figures are then converted to NM by multiplying the number of degrees by 60 and adding in the odd minutes of arc. Zenith distance is the radius of the circle which becomes the celestial LOP. This circle is called the circle of equal altitude [Figure 8-20], as anyone located on it views an identical Ho. Now that you can determine the distance to the subpoint, you must next find the direction.

Figure 8-19. Co-altitude and Zenith distance.

True Azimuth (Zn)

The direction to a body from an observer is called Zn . A celestial body's Zn is the true bearing (TB) to its subpoint. The Zn is the angle measured at the observer's position from true north (TN) clockwise through 360° to the great circle arc joining the observer's position with subpoint. [Figure 8-21] If you could measure the Zn when you measure its altitude, you could have a fix. Unfortunately, there is no instrument in the aircraft that measures Zn accurately enough. Except in the case of a very high body $\left(85-90^{\circ}\right)$, if you observe a

Figure 8-20. Constructing a circle of equal altitude.

Figure 8-21. Relationship of true azimuth to an observer.
body with a Ho of 40° and you mismeasure the Zn by 1°, the fix will be 50 NM off.

Celestial Fix

Since you cannot normally fix off a single body, you usually need to cross two or more LOPs. The fix position is the intersection of the LOPs. A celestial LOP is a circle as shown
in Figure 8-22. When two celestial LOPs are plotted, they intersect at two points, only one of which can be your position. In practice, these two intersections usually are so far apart that DR removes all doubt as to which is correct.

Chapter Summary

This chapter introduced celestial concepts and how they relate to celestial navigation. The motion of celestial bodies and celestial coordinates are discussed, as well as the use of the Air Almanac. The celestial horizon is explained and detail is given on how to determine observed altitude, true azimuth, and how to find a celestial fix.

NCP

Chapter 9

Computing Altitude and True Azimuth

Introduction

This chapter discusses the procedures and some of the tables used to compute a celestial line of position (LOP). Some of the tables used to resolve the LOP, including the Air Almanac, were previously mentioned. First, we will discuss the astronomical triangle upon which the tables are based. Then, we will cover how to determine the local hour angle (LHA) of Aries and the LHA of a star.

LHA and the Astronomical Triangle

The basic principle of celestial navigation is to consider yourself to be at a certain assumed position at a given time; then, by means of the sextant, determining how much your basic assumption is in error. At any given time, an observer has a certain relationship to a particular star. The observer is a certain number of nautical miles (NM) away from the subpoint, and the body is at a certain true bearing (TB) called true azimuth (Zn), measured from the observer's position. [Figure 9-1]

Figure 9-1. Subpoint of a star.

Intercept

Assume yourself to be at a given point called the assumed position. At a given time, there exists at that instant a specific relationship between your assumed position and the subpoint. The various navigational tables provide you with this relationship by solving the astronomical triangle for you. From the navigational tables, you can determine how far away your assumed position is from the subpoint and the Zn of the subpoint from the assumed position. This means, in effect, that the tables give you a value called computed altitude (Hc) which would be the correct observed altitude (Ho) if you were anywhere on the circle of equal altitude through the assumed position. Any difference between the Hc determined for the assumed position and the Ho as determined by the sextant for the actual position is called intercept. Intercept is the number of NM between your actual circle of equal altitude and the circle of equal altitude through the assumed position. It is by means of the astronomical triangle that you can solve for

Hc and Zn in the Sight Reduction Tables for Air Navigation found in Pub. No. 249.

Construction of the Astronomical Triangle

Consider the solution of a star as it appears on the celestial sphere. Start with the Greenwich meridian and the equator. Projected on the celestial sphere, these become the celestial meridian and the celestial equator (called equinoctial) as shown in Figure 9-2. Notice also in the same illustration how other known information is derived, namely the LHA of the star Aries-equal to the Greenwich hour angle (GHA) of Aries minus longitude west. You can also see that if the LHA of Aries and sidereal hour angle (SHA) of the star are known, the LHA of the star is their sum. It should also be evident that the GHA of Aries plus SHA of the star equals GHA of the star. Also, the GHA of the body minus west longitude (or plus east longitude) of the observer's zenith equals LHA of the body. These are important relationships used in the derivation of the Hc and Zn .

Figure 9-3 shows part of the celestial sphere and the astronomical triangle. Notice that the known information of the astronomical triangle is the two sides and the included angle; that is, Co-Dec, Co-Lat, and LHA of the star. Co-Dec, or polar distance, is the angular distance measured along the hour circle of the body from the elevated pole to the body. The side, Co-Lat, is 90° minus the latitude of the assumed position. The included angle in this example is the LHA. With two sides and the included angle of the spherical triangle known, the third side and the interior angle at the observer are easily solved. The third side is the zenith distance, and the interior angle at the observer is the azimuth angle (Z). Instead of listing the zenith distance, the astronomical tables list the remaining portion of the 90° from the zenith, or the Hc. Hc equals 90° minus zenith distance of the assumed position, just as zenith distance of the assumed position equals $90^{\circ}-$ Hc. Note that when measured with reference to the celestial horizon, zenith distance is synonymous with co-altitude. Figure 9-4 is a side view of this solution.

So far, the astronomical triangle has been defined only on the celestial sphere. Refer again to Figure 9-3 and notice the same triangle on the terrestrial sphere (earth). The same triangle with its corresponding vertices may be defined on the earth as follows: (1) celestial pole-terrestrial pole; (2) zenith of assumed position-assumed position; and (3) star-subpoint of the star. The three interior angles of this triangle are exactly equal to the angles on the celestial sphere. The angular distance of each of the three sides is exactly equal to the corresponding side on the astronomical triangle. Celestial and terrestrial terms are used interchangeably. For example, refer to Figure 9-3 and notice that Co-Lat on the terrestrial triangle is also called Co-Lat on the celestial

Figure 9-2. Astronomical triangle.

Figure 9-3. Celestial-terrestial relationship.

Figure 9-4. Co-altitude equals 90 minus Hc .
triangle. To be perfectly correct, the term on the celestial sphere corresponding to latitude on the earth is declination (Dec); therefore, the celestial side could well be called codeclination of the zenith of the assumed position.

Rather than have this confusion, the terrestrial term Co-Lat is also used with reference to the celestial sphere, just as latitude of the subpoint is considered to be the Dec amount from the equator. Latitude is used when referring to the observer or zenith, and Dec is used when referring to the star or its subpoint. The distance between the subpoint and the assumed position is generally referred to as zenith distance (Co-Alt) rather than the segment of the vertical circle joining the subpoint and the assumed position. These angular distance terms are interchangeable on the celestial and terrestrial spheres.

The values of the Zn and the interior angle (Z) are listed in the Pub. No. 249 tables depending upon whether or not a Dec solution is desired. Pub. No. 249, Volume 1, lists the Zn rather than the interior angle. Pub. No. 249, Volumes 2 and 3, list the interior angle (Z). It is necessary to follow rules printed on each page to convert the interior angle (Z) to true azimuth (Zn).

Pub. No. 249, Volume 1

Volume 1 of Pub. No. 249 deals solely with the solution concerning selected stars and is considered separately from Volumes 2 and 3. Volume 1 provides complete worldwide coverage from pole to pole for each degree of latitude. The LHA of Aries is listed in 1° increments from latitudes of 0° to 69° North and South inclusive. From 70° through 89° of latitude, the meridians are so close together that it is only necessary to tabulate the values of the LHA of Aries in
even 2° increments. There are two pages devoted to each whole degree of latitude between latitudes $69^{\circ} \mathrm{N}$ and $69^{\circ} \mathrm{S}$ inclusive. From there to the pole, only one page is devoted to each whole degree of latitude. The three stars marked by diamonds on each page provide sets for fixing purposes that are favorably situated in altitude and azimuth.

The entering arguments are the assumed latitude and the LHA of Aries (to whole degrees). At any one time, the navigator has the choice of the seven listed stars for that latitude plus Polaris. The names of the stars are in capital letters if the star is of first magnitude or brighter; the second magnitude stars are printed in small letters. The names of the stars are listed every 15° of LHA of Aries (every 30° in the polar latitudes). For the time the navigator expects to make an observation, commonly called a shot, they look up the GHA of Aries and apply the approximate longitude to get a whole degree LHA of Aries. The navigator then enters Pub. No. 249, Volume 1, with the latitude closest to the dead reckoning (DR) latitude and the LHA of Aries to select the stars that will be shot.

Since single celestial observation results in only one LOP, it is necessary to shoot two or more bodies to obtain a fix. Suppose the navigator wants to shoot at approximately 0230 Greenwich Mean Time (GMT), he or she looks up the GHA of Aries (in the Air Almanac) and finds it to be 196°. The DR position for this time is $31^{\circ} 48^{\prime} \mathrm{N}, 075^{\circ} 26^{\prime} \mathrm{W}$. A quick calculation shows the LHA of Aries is approximately 121°, and the closest latitude is $32^{\circ} \mathrm{N}$. Notice in the portion of the tables reproduced in Figure 9-5 the available stars at this position are Alkaid, Regulus, Alphard, Sirius, Rigel, Aldebaran, and Capella. Using Sirius, a shot is taken at 0231 and the Ho obtained is $37^{\circ} 50^{\prime}$.

Figure 9-5. Enter tables with LHA Aries and latitude.

GHA Aries for 0230 GMT
$196^{\circ} 06^{\prime}$
15
$196^{\circ} 21^{\prime}$
W075 ${ }^{\circ}$ 21

The closest whole degree of latitude is $32^{\circ} \mathrm{N}$; therefore, it is used as the assumed latitude. The assumed longitude is selected as the closest point, resulting in an LHA of Aries that is a whole degree (no minutes). The Hc of Sirius is listed as $37^{\circ} 40^{\prime}$. The Zn is 205°.

The second shot was taken at 0234 using Regulus, the Ho being $55^{\circ} 30^{\prime}$. A new DR position could be obtained for 0234 GMT , but the 0230 Z DR position will suffice for this determination of Hc and Zn .

GHA Aries for $0230 \mathrm{GMT} \quad 196^{\circ} 06^{\prime}$
Correction for 4 minutes $\quad 1^{\circ} 00^{\prime}$
GHA Aries for $0234 Z$
$197^{\circ} 06^{\prime}$
Closest longitude for whole LHA
(assumed longitude)
LHA Aries for $0234 Z$

The assumed latitude is still $32^{\circ} \mathrm{N}$ and, in this case, $075^{\circ} 06^{\prime}$ W is the assumed longitude since this is the closest longitude to the DR longitude that results in the LHA of Aries being a whole degree. The Hc of Regulus is listed as $56^{\circ} 19^{\prime}$, and the Zn is 119°. The various corrections that must be applied, as well as the plotting of the fix, are discussed later.

Postcomputation Method

The steps in the precomputation method are as follows:

1. Determine the GHA of Aries for the time of observation from the Air Almanac.
2. Assume a position as close as possible to the DR position at the time of the shot so the latitude and LHA of Aries in whole degrees may be determined.
3. Turn to the page in Pub. No. 249 for the assumed latitude and, opposite the LHA of Aries, select the stars to be shot. In making the selection, assume the LHA of Aries will change 1° every 4 minutes of time.
4. Shoot the body and record the time, Ho, and name of the body.
5. Obtain the GHA of Aries for the time of the observation, and apply the assumed longitude to determine the LHA of Aries.
6. Turn to the pages for the assumed latitude and, opposite the LHA of Aries in the column headed by the name of the star, find and record the Hc and Zn .

Pub. No. 249, Volumes 2 and 3

Volume 1 consists of tables of Hc and Zn for selected stars. Because the Dec and SHA of each star change slowly, these tables may be used for many years with only small corrections. The Dec and SHA of a nonstellar body change rapidly, making a permanent format similar to Volume 1 impossible for the sun, moon, and planets.

Volumes 2 and 3 have Dec tables adequate for determining the Hc and Zn of any celestial body within the Dec range of $30^{\circ} \mathrm{N}$ to $30^{\circ} \mathrm{S}$. They are intended primarily for use when observing nonstellar (solar system) bodies. Volume 2 provides latitudes between $39^{\circ} \mathrm{N}$ and $39^{\circ} \mathrm{S}$, and Volume 3 provides for latitudes from $40^{\circ} \mathrm{N}$ or S to the poles.

Provision is made for observed altitudes from 90° above to 3° below the horizon (7° from latitudes 70° to the pole). In view of refraction and of possible long intercepts, the tables are actually extended 2° below these limits.

Entering Argument

Volumes 2 and 3 are entered with the LHA of the body, in contrast to Volume 1, which is entered with the LHA of Aries. The range extends from 0° through all LHAs applicable within the altitude limits of the body. Between latitude 70° and the pole, the LHA interval is 2°; for latitudes below 70°, the interval is 1°. Arguments of LHA of the body less than 180° appear on the left margin, and arguments greater than 180° appear on the right.

Several pages are devoted to each degree of latitude. Each page has 15 declination (Dec) columns and is labeled with its value at the top and bottom. Each page is also marked Declination Contrary Name to Latitude or Declination Same Name as Latitude.

The entering arguments of LHA of the body, for declination of contrary name to latitude, always increase from the bottom of the page on the left side and decrease on the right. The opposite arrangement exists on pages where Dec and latitude has the same name. Occasionally, one page is blank in the middle and the top half covers Declination Same Name as Latitude, while the bottom half is Declination Contrary Name to Latitude.

Azimuth angle (Z) is listed instead of true azimuth (Zn). Since Zn is used for plotting, it is necessary to convert Z to Zn . The rules for conversion are listed on the left-hand side at the top and bottom of every page. Notice that LHA and Zn will never occur on the same side of 180°.

In addition to Hc and Z , a value of d is also listed. This d -value is the change in altitude (Hc) with a 1° increase in Dec. If the LHA and Dec of the body and the latitude of the assumed position are each a whole number of degrees, the Hc and Z are found in the correct Dec column opposite the LHA of the body on the page marked by the proper latitude value.

For example, refer to the portion of the table shown in Figure 9-6. At the latitude $40^{\circ} \mathrm{N}$, if the LHA of a body is 86° and its Dec is $5^{\circ} \mathrm{N}$, the Hc is $06^{\circ} 16^{\prime}$ and the azimuth angle (Z) is 089°. The rule in the upper left-hand corner of the page applies for the conversion of Z to $\mathrm{Zn} . \mathrm{Zn}=360^{\circ}-\mathrm{Z}$ or $360^{\circ}-089^{\circ}=271^{\circ}$. Here again the position is assumed so that latitude and LHA are whole numbers.

Interpolation for Declination (Dec)

When the Dec of a body is a number of minutes in addition to a whole number of degrees, the altitude (Hc) is extracted for the whole number of degrees and corrected by interpolation for the additional minutes. There is rarely a need for interpolation of Z , which is given only to the nearest degree.

Interpolation for Hc should always be made in the direction of increasing Dec in accordance with the sign of the d-value. Not all of the signs are printed; the sign is given at least once in each block of five entries and can always be found by looking either up or down the column from the value of d in question. The correction to altitude for additional minutes of Dec is proportional to d and proportional to the number of additional minutes.

In the previous example, the latitude was 40°, the LHA of the body was 086°, and the Dec was $5^{\circ} \mathrm{N}$. Suppose the Dec had been $5^{\circ} 17^{\prime} \mathrm{N}$. The basic figures obtained would be $06^{\circ} 16^{\prime}$ Hc and $089^{\circ} \mathrm{Z}$ as before, and the true azimuth (Zn) would still be 271°. The Hc of $06^{\circ} 16^{\prime}$ is not correct for a Dec of 5° $17^{\prime} \mathrm{N}$, but is correct for $5^{\circ} \mathrm{N}$. The Hc change for an additional 1° of Dec (d-value) is +39 minutes of altitude. However, the correction needed in this case is for 17 minutes of Dec, not a whole degree. Consequently, the additional correction is $17 / 60$ of 39^{\prime}. To the closest whole number, this would be +11 minutes of altitude.

This multiplication can be done on the slide rule face of the DR computer or by means of a table found in back of Pub. No. 249, Volumes 2 and 3. A portion of this table is shown in Figure 9-7. Notice that there are no signs listed. The proper sign for the answer from this table is the same sign as the basic d-value. A rule of thumb is the correction is a plus (+) for Declination of Same Name as Latitude and a negative (-) for Declination of Contrary Name as Latitude. Values of d are given across the top of the table and additional minutes of Dec are given down the side of the table. In the table, the correction

Figure 9-6. Enter tables with latitude, Dec, and LHA.

Figure 9-7. Table performs the multiplication.
11^{\prime} is found by looking across 17 ' for Dec and down 39' for d to their intersection at 11^{\prime}. Since the sign of the d-value is plus, this correction is added to the tabulated Hc. The correct Hc value then becomes $06^{\circ} 16^{\prime}+11^{\prime}$ or $06^{\circ} 27^{\prime}$.

Following is a sample problem illustrating the solution. Refer to the portion of the tables in Figure 9-8 for the solution.

Suppose the sun is observed at 1005 GMT. The DR position is $38^{\circ} 12^{\prime} \mathrm{N}, 101^{\circ} 47^{\prime} \mathrm{E}$, and the Ho of the sun is $10^{\circ} 52^{\prime}$.

Dec of the Sun for 1000 Z	$\mathrm{S}^{\circ} 37^{\prime}$
GHA Sun for 1000Z	$326^{\circ} 53^{\prime}$
Correction to GHA for 5 minutes	$\frac{+1^{\circ} 15^{\prime}}{}$GHA Sun for 1005 Z $328^{\circ} 08^{\prime}$ Closest longitude for whole degree LHA $+\mathrm{E} 101^{\circ} 52^{\prime}$ (assumed longitude) $430^{\circ} 00^{\prime}$ $-360^{\circ} 00^{\prime}$ $070^{\circ} 00^{\prime}$ LHA Sun for 1005 Z

The closest whole degree of latitude is $38^{\circ} \mathrm{N}$ and is used as the assumed latitude. Since the assumed latitude is north and Dec is south, the navigator must use Pub. 249, Volume 2, page for 38° latitude, which is headed Declination $\left(0^{\circ}-14^{\circ}\right)$ Contrary Name to Latitude. Following LHA 070° across the page to $7^{\circ} \mathrm{Dec}$, the navigator extracts:

Tab Hc	11°	-06^{\prime}
d-value	-40^{\prime}	
Z	108°	
d-correction from Pub. No. 249, Volume 2	-25^{\prime}	

Corrected Hc
$10^{\circ}-41^{\prime}$
Zn using rule in the upper left-hand corner
252°
of the page

Postcomputation Summary

Before proceeding, review the procedures for finding the Hc and Zn of a body whose Dec lies between $30^{\circ} \mathrm{N}$ and $30^{\circ} \mathrm{S}$, using Pub. No. 249, Volume 2 or 3.

1. Shoot the body and record the time of observation, the body's name, and the Ho.
2. From the Air Almanac, extract GHA and Dec of the body for the time of the observation.
3. Assume a position close to the DR position so that the latitude is a whole number of degrees and the longitude combined with the GHA of the body gives a whole number of degrees of LHA of the body. Find the LHA of the body for this position.
4. Select the correct volume (2 or 3) and page that contains the correct arguments of Dec and LHA of the body, temporarily disregarding the odd additional minutes of Dec. Thus, if the Dec were N $19^{\circ} 55^{\prime}$, use the column for 19°. Select the table labeled Declination Same Name as Latitude, if Dec and latitude are both north or both south, or select the table labeled Declination Contrary Name to Latitude, if one is north and the other south. Opposite the LHA of the body, read the tabulated altitude, d -value, and Zn in the column headed by the whole degrees of Dec.
5. If the Dec is not a whole number of degrees, determine the correction for the additional minutes of Dec. Enter the table in the Pub. No. 249 volume with the value d and the number of additional minutes of Dec. Apply the correction to the tabulated altitude (Hc) according to the sign of d . This is the corrected Hc .

Figure 9-8. Declination 0-14 ${ }^{\circ}$ Contrary Name to Latitude.
6. Convert azimuth angle (Z) to true azimuth (Zn) by means of the rule at the top or bottom of the page.
7. This completes the solution for the Dec tables. Keep in mind this solution is computed after the observation. Because of the speeds involved in air navigation, we will explain a way to compute the solution before the shot in the next chapter.

Precession and Nutation

The earth's axis does not maintain a fixed direction in space. Actually, the earth is like a slow running gyro that is wobbling. There are several separate patterns that the wobble makes. Some of those patterns have short cycles, while others take hundreds of years to complete. Two of the many patterns are shown in Figure 9-9. One involves small nodding motions while at the same time completing a larger circular path. You must use a correction called precession and nutation to account for these variations in the apparent position of the stars. This correction is applied only to celestial LOPs determined with Pub. No. 249, Volume 1.

Figure 9-9. Earth's axis wobble.

Precession

Because of the equatorial bulge, the attractive forces of other solar system bodies, principally the moon, are unbalanced about the center of the earth. The imbalance is directed toward aligning the equator with the plane of the ecliptic. However, the rotation of the earth transforms this force into an effect acting 90° away in the direction of rotation-a precessional effect. The result is that the poles travel in a
conical path westward around the ecliptic poles, as shown in Figure 9-10 (the point 90° from the ecliptic). Consequently, the points of intersection of the equator with the ecliptic, or the equinoxes, travel in a westerly direction along the ecliptic. This travel is called precession of the equinoxes, and it amounts to approximately $5 / 6$ of a minute (50.26") annually. The equinoxes complete one revolution along the ecliptic in approximately 25,800 years. The equator is used as a reference for Dec and its movement, due to precession of the equinoxes, causes slight changes in the celestial coordinates of the stars that otherwise appear fixed in space.

Figure 9-10. Precession of the equinoxes.

Nutation

As the relative positions and distances from the earth to the sun, moon, and planets vary, so does the rate of precession. The only variation of importance in navigation is nutation. Nutation is a nodding of the poles, one oscillation occurring in about 18.6 years.

In Figure 9-11, you can see that if the stars remain fixed and the equinoctial moves up and down, the Dec of these bodies is changing.

Nutation, being approximately perpendicular to the ecliptic, has an appreciable influence on Dec. It is caused by complex gravitational forces among the sun, moon, and earth because the moon's orbit does not always lie in the plane of the ecliptic. The change in Dec of the celestial bodies caused by the resulting wobble of the earth's axis is called nutation.

Figure 9-11. Nutation changes the declination.

Position Corrections

Because of precession and nutation, Hc and Zn for a star are accurate only at the instant, or epoch, at which the LHA and Dec for the computations are correct. A position obtained at any other time with that Hc and Zn requires a correction. Pub. No. 249, Volume 1, contains Hc and Zn calculated for an epoch year (midnight, 1 January, of that year) so, if the volume is used in any other year, the resultant position must be corrected. The precession and nutation corrections are combined and given in Pub. No. 249, Volume 1, Table 5.

Entering arguments for the table is year, latitude, and LHA of Aries, and the correction is presented in the form of a distance and direction to move the fix. The tabulated values show the distance, parallel to the ecliptic, between the observer's position in the year of the fix and the position in the epoch year at the latitude and LHA of Aries.

Directions for using Table 5 are printed in the introduction of Pub. No. 249, Volume 1. One point needs emphasis here: the table is to be used only for observations plotted with the aid of Volume 1, never in conjunction with Volumes 2 or 3.

Chapter Summary

This chapter introduces the astronomical triangle and how the Pub. No. 249 volumes you use in resolving the astronomical triangle. We have discussed obtaining solutions involving celestial bodies using Pub. No. 249, Volumes 1, 2, and 3. Succeeding chapters discuss plotting of the celestial LOPs and techniques of pre-computation.

Chapter II

- = Celestial Preeramputation/

Introduction

Celestial precomputation is neither new nor revolutionary. The tables necessary to do precomputation have been available since 1940; however, there was no operational requirement for precomputation at that time. With present day high-speed aircraft, however, the picture has changed radically. By postcomping, a great deal of work must be done after the last celestial observation. The fix could easily be 15 minutes old by the time it is plotted on the chart. At 450 knots groundspeed (GS), a fix that is 15 minutes old is over 100 miles behind the aircraft and is of questionable value. Another factor necessitating precomputation in high-speed aircraft lies in the method of shooting celestial. With the limited field of view of the sextant, the correct star is difficult to find unless you know where to look.

TIME
rosswr

Presetting the Sextant

Precomputation greatly reduces both of the problems just mentioned. By completing most of the computations before shooting, the navigator reduces the time necessary to plot the fix after the last observation. Also, the problem of finding the star in the optics of the sextant is simplified. The procedure for finding the star is similar to the heading check performed with the periscopic sextant, using the true bearing (TB) method as explained in Chapter 12, Special Celestial Techniques. In this case, the true azimuth (Zn) is set into the sextant mount and the computed altitude (Hc), which approximates the sextant altitude (Hs), is set into the sextant. Now, instead of sighting the body to determine the true heading (TH), set the TH under the vertical crosshair to find the selected body, hopefully very close to the crosshairs in the sextant field of view. Use the inverse relative bearing (IRB) method to avoid erroneous settings in the azimuth window and to increase speed in setting up the sextant. In this method, the azimuth window remains permanently at 000.0° and the IRB is computed by the formula: $\mathrm{IRB}=\mathrm{TH}-\mathrm{Zn}$. The body should be found at its computed altitude when its IRB appears under the crosshairs.

Precomputation Techniques

There are many acceptable methods of precomputation in general usage. However, these methods are basically either graphical, mathematical, or a combination of both methods. Selection is largely based on individual navigator preference. Celestial corrections that are used in precomputation include atmospheric refraction, parallax of the moon, instrument and acceleration errors, Coriolis and rhumb line, precession and nutation, motion of the observer, and wander. With precomputation, new corrections and terminology are introduced that include fix time, solution time, observation time, scheduled time, and motion of the body adjustment.

Fix time is the time for which the lines of position (LOP) are resolved and plotted on the chart. Solution time is the time for which the astronomical triangle is solved. Observation time is the midtime of the actual observation for each celestial body. Scheduled time is the time for which the astronomical triangle is solved for each LOP in the graphic method. Motion of the body correction is used to correct for the changing altitude of the selected bodies from shot to fix time and may be applied either graphically or mathematically.

Motion of the Body Correction

Motion of the body correction can be applied graphically by moving the assumed position eastward or westward for time. This is possible because the Greenwich hour angle (GHA) and the subpoint of the body move westward at the rate of 1° of longitude per 4 minutes of time. In the graphic method, a scheduled time of observation is given to each body. If shooting is off schedule, the following rules apply:

1. For every minute of time that the shot is taken early, move the assumed position 15 ' of longitude to the east; for every minute of time that the shot is taken late, move the assumed position 15^{\prime} of longitude to the west.
2. When the latitude of the assumed position and the Zn of the body are known, the motion of the body can be computed mathematically. For 1 minute, the formula is: $15(\cos l a t) /(\sin \mathrm{Zn})$. This correction is shown in tabular form in Figure 10-1.

The National Imagery and Mapping Agency has published the Sight Reduction Tables for Air Navigation in a publication referred to as Pub. No. 249. These tables are published in three volumes. Volume 1, used by both the marine and air navigator, contains the altitude and azimuth values of seven selected stars for the complete ranges of latitude and hour angle of Aries. These seven stars represent the best selection for observation at any given position and time, and provide the data for presetting instruments before observation and for sight reduction afterwards. Volumes 2 and 3 cover latitudes $0-40$ and $39-89$ respectively and are primarily used by the air navigator in conjunction with observations of celestial bodies to calculate the geographic position of the observer.

In Publication No. 249, the local hour angle (LHA) increases 1° in 4 minutes of time. Thus, the Hc for an LHA that is 1° less than the LHA used for precomputation is the Hc for 4 minutes of time earlier than the solution time. The difference between the two Hcs is the value to apply to the Hc or Hs to advance or retard the LOP for 4 minutes of time. If the Hc decreases (Zn greater than 180°), the body is setting and the sign is minus (-) to advance the LOP if the value is applied to the Hs. If the Hc increases (Zn less than 180°), the body is rising and the sign is plus (+) to advance the LOP if the value is applied to the Hs.

In addition, motion corrections may be determined by using a modified MB-4 computer. This modification allows for greater accuracy and speed in computation of combined motions (motion of the observer and motion of the body) than the Pub. No. 249 tables. For a discussion of this modification, see chapter 12.

Special Celestial Techniques

The main difference between the basic methods of precomputation is the manner in which the motion of the observer and the motion of the body corrections are applied. In the graphic method, both corrections are applied graphically by movement of the assumed position or the LOP. In the mathematical method, both corrections are applied mathematically to the Hc , the Hs , or the intercept after being obtained from tables, a modified MB-4 computer, or the Pub. No. 249.

True Zn	Correction for 4 minutes of time																										True Zn
	Latitude																										
	0	816	20	24	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	60	64	68	72	76	80	84	
090	+60	$+59+58$	+56	+55	+53	+52	+51	+50	+49	+47	+46	+45	+43	+42	+40	+39	+37	+35	+34	+30	+26	+22	+19	+15	+10	+6	090
095	60	5957	56	55	53	52	51	50	48	47	46	44	43	42	40	38	37	35	33	30	26	22	18	14	10	6	085
100	59	$59 \quad 57$	56	54	52	51	50	49	48	47	45	44	43	41	40	38	36	35	33	30	26	22	18	14	10	6	080
105	58	$57 \quad 56$	54	53	51	50	49	48	47	46	44	43	42	40	39	37	36	34	32	29	25	22	18	14	10	6	075
110	56	$56 \quad 54$	53	52	50	49	48	47	46	44	43	42	41	39	38	36	35	33	32	28	25	21	17	14	10	6	070
115	54	$54 \quad 52$	51	50	48	47	46	45	44	43	42	40	39	38	36	35	33	32	30	27	24	20	17	13	9	6	065
120	+52	$+51+50$	+49	+47	+46	+45	+44	+43	+42	+41	+40	+39	+37	+36	+35	+33	+32	+31	+29	+26	+23	+19	+16	+13	+9	+5	060
125	49	4947	46	45	43	43	42	41	40	39	38	37	35	34	33	32	30	29	27	25	22	18	15	12	9	5	055
130	46	$45 \quad 44$	43	42	41	40	39	38	37	36	35	34	33	32	31	30	28	27	26	23	20	17	14	11	8	5	050
135	42	$42 \quad 41$	40	39	37	37	36	35	34	33	33	32	31	29	28	27	26	25	24	21	19	16	13	10	7	4	045
140	39	$38 \quad 37$	36	35	34	33	33	32	31	30	30	29	28	27	25	25	24	23	22	19	17	14	12	9	7	4	040
145	34	$34 \quad 33$	32	31	30	30	29	29	28	27	26	26	25	24	23	22	21	20	19	17	15	13	11	8	6	4	035
150	+30	$+30+29$	+28	+27	+26	+26	+25	+25	+24	+24	+23	+22	+22	+21	+20	+19	+18	+18	+17	+15	+13	+11	+9	+7	+5	+3	030
155	25	$25 \quad 24$	24	23	22	22	22	21	21	20	19	19	18	18	17	16	16	15	14	13	11	9	8	6	4	3	025
160	21	2020	19	19	18	18	17	17	17	16	16	15	15	14	14	13	13	12	11	10	9	8	6	5	4	2	020
165	16	$15 \quad 15$	15	14	14	13	13	13	13	12	12	12	11	11	10	10	10	9	9	8	7	6	5	4	3	2	015
170	10	$10 \quad 10$	10	10	9	9	9	9	8	8	8	8	7	7	7	7	6	6	6	5	5	4	3	3	2	1	010
175	+5	+5 +5	+5	+5	+5	+5	+4	+4	+4	+4	+4	+4	+4	+4	+3	+3	+3	+3	+3	+3	+2	+2	+2	+1	+1	+1	005
180	0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	000
185	-5	$\begin{array}{lll}-5 & -5\end{array}$	-5	-5	-5	-5	-4	-4	-4	-4	-4	-4	-4	-4	-3	-3		-3	-3	-3	-2	-2	-2	-1	-1	-1	355
190	10	$10 \quad 10$	10	10	9	9	9	9	8	8	8	8	7	7	7	7	6	6	6	5	5	4	3	3	2	1	350
195	16	$15 \quad 15$	15	14	14	13	13	13	13	12	12	12	11	11	10	10	10	9	9	8	7	6	5	4	3	2	345
200	21	$20 \quad 20$	19	19	18	18	17	17	17	16	16	15	15	14	14	13	13	12	11	10	9	8	6	5	4	2	340
205	25	$25 \quad 24$	24	23	22	22	22	21	21	20	19	19	18	18	17	16	16	15	14	13	11	9	8	6	4	3	335
210	30	$30 \quad 29$	28	27	26	26	25	25	24	24	23	22	22	21	20	19	18	18	17	15	13	11	9	7	5	3	330
215	-34	-34-33	-32	-31	-30	-30	-29	-29	-28	-27	-26	-26	-25	-24	-23	-22	-21	-20	-19	-17	-15	-13	-11	-8	-6	-4	325
220	39	$38 \quad 37$	36	35	34	33	33	32	31	30	30	29	28	27	26	25	24	23	22	19	17	14	12	9	7	4	320
225	42	$42 \quad 41$	40	39	37	37	36	35	34	33	33	32	31	29	28	27	26	25	24	21	19	16	13	10	7	4	315
230	46	$46 \quad 44$	43	42	41	40	39	38	37	36	35	34	33	32	31	30	28	27	26	23	20	17	14	11	8	5	310
235	49	$49 \quad 47$	46	45	43	43	42	41	40	39	38	37	35	34	33	32	30	29	27	25	22	18	15	12	9	5	305
240	52	5150	49	47	46	45	44	43	42	41	40	39	37	36	35	33	32	31	29	26	23	19	16	13	9	5	300
245	-54	-54-52	-51	-50	-48	-47	-46	-45	-44	-43	-42	-40	-39	-38	-36	-35	-33	-32	-30	-27	-24	-20	-17	-13	-9	-6	295
250	56	$56 \quad 54$	53	52	50	49	48	47	46	44	43	42	41	39	38	36	35	33	32	28	25	21	17	14	10	6	290
255	58	5756	54	53	51	50	49	48	47	46	44	43	42	40	39	37	36	34	32	29	25	22	18	14	10	6	285
260	59	5957	56	54	52	51	50	49	48	47	45	44	43	41	40	38	36	35	33	30	26	22	18	14	10	6	280
265	60	5957	56	55	53	52	51	50			46	44		42	40			35	33	30	26	22	18	14	10	6	275
270	-60	-59-58	-56	-55	-53	-52	-51	-50	-49	-47	-46	-45	-43	-42	-40	-39	-37	-35		-30	-26	-22	-19	-15	-10	-6	270
										ation vation	s earl ns late	er than than	n so solu	lution ution	time ime	$\begin{gathered} \text { sig } \\ \text { sign } \end{gathered}$	ns as s rev	given rsed									

Figure 10-1. Correction for motion of the body.

Celestial Computation Sheets

The format in Figure 10-2 is a typical celestial precomputation and illustrates one acceptable method of completing a precomputation. The explanation is numbered to help locate the various blocks on the celestial sheets. [Figure 10-2]

NOTE: Not all blocks apply on every precomputation.

1. DATE-place the Zulu date of the Air Almanac page used in this block.
2. FIX TIME-GMT (coordinated universal time) of the computation.
3. BODY-the celestial body being observed.
4. DR LAT LONG-the dead reckoning (DR) position for the time of the observation.
5. GHA - the value of GHA extracted from Air Almanac (10-minute intervals).
6. CORR - the GHA correction for additional minutes of time added to the GHA in block 5 and, if necessary, the 360° addition required establishing the LHA. SHA-When a star is precomped with Pub. No. 249, Volume 2 or 3, SHA is placed in this block.
7. GHA-corrected GHA (sum of blocks 5 and 6).
8. ASSUM LONG (-W/+E)-the assumed longitude required to obtain a whole degree of LHA.
9. LHA—LHA of the body (or Aries).
10. ASSUME LAT - the whole degree of latitude nearest the DR position.
11. DEC-the declination of the celestial body (not used with Pub. No. 249, Volume 1).
12. TAB Hc-the Hc from the appropriate page of Pub. No. 249, Volume 2 or 3.
13. D-the d correction factor found with previous Hc. Include + or --, as appropriate. The value is used to interpolate between whole degrees of Dec.
14. DEC-minutes of declination from block 11.
15. CORR—the correction from the Correction to Tabulated Altitude for Minutes of Declination table in Volume 2 or 3, using blocks 13 and 14 for entering arguments.

Figure 10-2. Typical celestial precomputation format.
16. CORR Hc-this is the corrected Hc -sum of blocks 12 and 15 or extracted from Pub. No. 249, Volume 1.
17. Zn -true azimuth of the celestial body from the formula in Pub. No. 249, Volume 2 or 3, or directly from Volume 1.
18. TRACK-the true course (track) of the aircraft.
19. GS-the groundspeed of the aircraft.
20. ALT MSL—aircraft altitude.
21. CORIOLIS-the Coriolis correction extracted from Pub. No. 249, the Air Almanac, or a Coriolis/rhumb line table.
22. PREC/NUT-precession and nutation correction computed from the table in Pub. No. 249, Volume 1.
23. REL Zn or Zn -the difference between Zn and track, used to determine motion of the observer correction.
24. MOTION OF OBSERVER (MOO)—motion of the observer correction for either 1 minute (using 1-minute motion correction table) or 4 minutes (using 4-minute correction table in Pub. No. 249) of time.
25. MOTION OF BODY (MOB)—motion of the body correction for either 1 minute (using 1-minute motion correction table) or 4 minutes (using tabulated Hc change for 1° of LHA or 4-minutes correction table in Pub. No. 249) of time.
26. 4-MINUTE ADJUST—algebraic sum of 24 and 25; for use of 4-minute motion corrections extracted from Pub. No. 249.
27. X-Time-time in minutes between planned shot time and fix time.
28. TOTAL MOT ADJUST/ADV/RET-correction based on combined motion of observer and body, for the difference between the time of the shot and fix time. The sign of this correction is the same as the sign in block 26 if the observation was taken prior to the computation time. If it was taken later, the sign is reversed.
29. REFR-correction for atmospheric refraction.
30. PERS/SEXT-sextant correction or personal error.
31. SD—semidiameter correction for Sun or Moon.
32. PA—parallax correction for Moon observation.
33. POLARIS/Q CORR—the Q correction for the time of the Polaris observation (extracted from Pub. No. 249 or the Air Almanac).
34. Total ADJ—algebraic sum of blocks 28-33 as applicable.
35. OFF-TIME MOTION—motion adjustment for observation other than at planned time.
36. Ho—height observed (sextant reading).
37. INT-intercept distance (NM) is the difference between the final Hc and Ho. Apply the HOMOTO rule to determine direction (T or A) along the Zn .
38. LAT-polaris latitude.
39. CONV ANGLE (W/-E)-convergence angle used in grid navigation.
40. GRID Zn -the sum of blocks 17 and 39 .

Corrections Applied to Hc

In some methods of precomputation, corrections are applied in advance to the Hc to derive an adjusted Hc. When using corrections that are normally applied to Hs, the signs of the corrections are reversed if applied to Hc. For example:

Corrections Applied to Hs

Hs	$31^{\circ} 05$
REFR	-01
PERS/SEXT	-05
Ho	$30^{\circ} 59$
Hc	$30^{\circ} 40$
INT	19 T

Corrections Applied to Hc

Hc	$30^{\circ} 40$
REFR	+01
PERS/SEXT	+05
ADJ Hc	$30^{\circ} 46$
Hs	$31^{\circ} 05$
INT	19 T

This demonstrates that corrections may be applied to either Hs or Hc. As long as they are applied with the proper sign, the intercept remains the same. The following sample precomp uses a common fix time (though computation times are different) and common observation times to facilitate comparison.

NOTE: Atmospheric refraction correction must be extracted for the actual Hs. It may then be applied to either Hc or Hs using the proper sign. Extracting the value for Hc may cause large errors, especially when the body is near the horizon. Figure 10-3 is a sample three-star precomputation using the mathematical format. Corrections to altitude of the body are applied to the Hc and the sign of the correction has been reversed in this process, so the fix can be plotted prior to the

Figure 10-3. Mathematical solution.
computation time. All shots are early shots, allowing the navigator to resolve the fix and alter at fix time. However, any minor errors in interpolation for motions are multiplied for the two earliest shots and may cause inaccuracies in the fix. Refer to Appendix D for a blank celestial precomputation sheet.

Figure 10-4 shows a three-star precomputation using a three-LHA or graphical solution. The assumed position is then moved for track and GS to accommodate LOPs shot off time. Each observation is taken on time and then plotted out of its own plotting position. This precomp is easier and faster to accomplish with relatively few opportunities for math errors to occur. The three assumed positions required for this solution, on the other hand, often cause large intercepts and may make star identification difficult if care is not taken in choosing the precomp assumed position.

Limitations

Precomputational methods lose accuracy when the assumed position and the actual position differ by large distances. Another limiting factor is the difference in time between the scheduled and actual observation time. The motion of the body correction is intended to correct for this difference. The rate of change of the correction for motion of the body changes very slowly within 40° of 090° and $270^{\circ} \mathrm{Zn}$, and the observation may be advanced or retarded for a limited period of time with little or no error. When the body is near the observer's meridian, however, the correction for motion of the body changes rapidly due in part to the fast azimuth change and it is inadvisable to adjust such observations for long (over 6 minutes) periods of time.

NOTE: Errors in altitude and azimuth creep into the solution if adjustments are made for too long an interval of time. Because of these errors, the navigator should attempt to keep observation time as close as possible to computation time.

Preplotting True Azimuth (Zn)

To speed up fix resolution, some navigators preplot the Zn of the bodies. This technique works best when used on a constant scale chart and using a technique of precomputation that gives one assumed position. Before making any observations, plot the assumed position, correct it for Coriolis and precession and/or nutation (if required), and draw the Zn of the bodies through this point. Label each Zn as the 1 st, 2 d , or 3 d as shown in Figure 10-5, or use the name of the bodies. Use arrowheads to identify the direction of the body. Suppose the corrected assumed position is $30^{\circ} 40^{\prime} \mathrm{N}, 117^{\circ} 10^{\prime} \mathrm{W}$ and the following Zn were computed for the bodies:

1st shot $\mathrm{ZN} 020^{\circ}$
2 d shot $\mathrm{ZN} 135^{\circ}$
$3 \mathrm{~d} \operatorname{shot} \mathrm{ZN} 270^{\circ}$

BODY			
TIME			
LAT			
DEC			
GHA			
± 360			
GHA			
LONG ${ }_{+E}^{-w}$			
LHA			
HC			
CORR			
HC			
HO			
$\operatorname{INT}\left({ }^{\top}{ }_{A}\right)$			
ZN			
LONG/CONV			
GRIO ZN			
BODY	VERA	SPICA	ALLOW
TIME	0652	0656	0700
LAT			39N
DEC			
GHA			312-46
± 360			-
GHA			312-46
LONG ${ }_{+}^{-w}$			120-46W
LHA	190	191	192
HC	23-49	39-05	27-32
CORR	+01	0	+01
HC	23-50	39-05	27-33
HO	23-04	39-20	27-24
INT (${ }^{\text {a }}$) ${ }^{\text {a }}$	46 A	15 T	9 A
ZN	058	167	285
LONG/CONV			
GRIO ZN			
DRIFT DATA			
TIME			
GROSS WT			
PAGE NO.			
FUEL MEM			
O/M FUEL			
DIFF			
FUEL ETE			
ETE DEST			
EXTM TIME			
EHOUR			

Figure 10-4. Graphical solution.

Figure 10-5. The fix can be plotted quickly.
The original assumed position of $31^{\circ} \mathrm{N} ; 117^{\circ} 08^{\prime} \mathrm{W}$ has been corrected for precession and/or nutation and for Coriolis or rhumb line error to obtain the plotting position. When the first intercept is found to be 10 A , second intercept 40A, and the third intercept 50T, the fix may be plotted quickly by constructing perpendicular lines at the correct point on the respective Zn line. This greatly reduces the time necessary to plot the fix.

Chapter Summary

Celestial precomputation methods have been brought to the forefront with the proliferation of high-speed aircraft. Aircraft speeds make it necessary to minimize the time between shooting and fixing. Since the sextant may be the only means of viewing the body, it is necessary to precompute the altitude and azimuth of a body in order to locate it. Remember corrections may be applied to the Hc , Ho , or intercept, and pay close attention to the sign of the correction. In addition to precomputation, the fix may be resolved faster by preplotting the true azimuths of the bodies.

Chapter II

Ploting and Interpreting the Ceilestial Line

 of Position
Introduction

This chapter explains the methods that transform the tabulated and inflight observation values into an aircraft position. The navigator is faced with two tasks: plotting the resultant information onto a chart and resolving this information into an aircraft position. There are two basic methods of obtaining a line of position (LOP): the subpoint method and the intercept method.

Subpoint Method

A detailed explanation of the theory concerning the subpoint method is in Chapter 9, Computing Altitude and True Azimuth, and Chapter 10, Celestial Precomputation. [Figure 11-1] Following is a summary of the steps involved:

1. Positively identify the body and measure the altitude using a sextant.
2. Because no tabulated information for azimuth or elevation is required for this method, corrections for refraction, parallax, semidiameter, wander error, and sextant correction are applied directly to the Ho.
3. The resultant measurement is subtracted from 90° to obtain the co-altitude (co-alt). To convert to NM $\left(1^{\circ}=60 \mathrm{NM}\right)$, multiply the number of degrees times 60. Any fractional portion of degrees is added to the previous value.

Example: Vega is observed at an altitude (Ho) of $88^{\circ} 23^{\prime}$. Sextant correction is -03^{\prime}.

$$
\begin{aligned}
& 88^{\circ} 23^{\prime}-03^{\prime}=88^{\circ} 20^{\prime} \\
& 90^{\circ}-88^{\circ} 20^{\prime}=1^{\circ} 40^{\prime} \\
& 1^{\circ} 40^{\prime}=60^{\prime}+40^{\prime}=100 \mathrm{NM}
\end{aligned}
$$

In this example, 100 NM represents the distance from the observer's position to the subpoint of the body. The coordinates of the body are its corresponding declination (Dec) and Greenwich hour angle (GHA). For this example, Vega's Dec is N38 ${ }^{\circ} 46$ '. The GHA is obtained by applying the sidereal hour angle (SHA) of Vega to the GHA of Aries.

Example:

$$
\begin{aligned}
& \text { SHA }=080^{\circ} 59^{\prime} \\
& \text { GHA Aries }=039^{\circ} 18^{\prime} \\
& \text { GHA Vega }=120^{\circ} 17^{\prime}
\end{aligned}
$$

Subpoint of Vega is located at $38^{\circ} 46^{\prime} \mathrm{N} 120^{\circ} 17^{\prime} \mathrm{W}$. The observer is now ready to apply the information:

1. Plot the subpoint on an appropriate chart.
2. With dividers or compass, span the co-alt distance; in this case 100 NM.
3. Use the body's subpoint $\left(38^{\circ} 46^{\prime} \mathrm{N} 120^{\circ} 17^{\prime} \mathrm{W}\right)$ as the center and 100 NM (co-alt) as the radius. The circle is called the circle of equal altitude and the observer is located on that portion of the circle nearest the dead reckoning (DR) position. There are definite advantages to this method. It requires no precomputation values and plotting is very simple if the observer and body are reasonably close together. When the observer and body are separated by great distances, some disadvantages appear.
4. If a body is observed at 20° above the horizon, the observer is 4,200 NM from its subpoint. To swing a LOP from this subpoint, the subpoint and the arc must be plotted on the same chart. To permit plotting of any LOP, the chart must cover an area extending more than 4,000 miles in every direction from the DR position. This means that the chart must be either of such large size that it cannot be spread out on a table in the aircraft, or of such small scale that plotting on it is inaccurate. To cover an area 8,000 miles across, a chart 4 feet square must be drawn to a scale of about $1: 10,000,000$. Furthermore, measuring would be difficult because of distortion.

Figure 11-1. The subpoint method.
5. Since a celestial LOP cannot always be drawn by the subpoint method, the intercept method, based on the same principles, is often used.

Intercept Method

You can eliminate the need for plotting the body's subpoint and still draw the arc representing the circle of equal altitude. [Figure 11-2] By using the following formula, you can calculate the altitude and azimuth of the body for the DR position:

$$
\begin{aligned}
& \mathrm{Hc}=\mathrm{SIN}^{-1}\left[\mathrm{SIN}\left(\mathrm{DEC} \mathrm{C}^{\prime}\right) \mathrm{SIN}(\mathrm{LDr})+\mathrm{COS}\left(\mathrm{DEC}^{\prime}\right) \mathrm{COS}\right. \\
& \text { (LDr) COS (LHA)] } \\
& \mathrm{Z}=\operatorname{COS}(\mathrm{Z})=\left[\operatorname{SIN}\left(\mathrm{DEC} \mathrm{C}^{\prime}\right)-\operatorname{SIN}(\mathrm{LDR}) \operatorname{SIN}(\mathrm{HC})\right] /[\mathrm{COS} \\
& \text { (Hc COS (LDr)] } \\
& \mathrm{Zn}=\mathrm{Z} \text { if SIN (LHA) }<0 \\
& \mathrm{Zn}=360-\mathrm{Z} \text { if SIN (LHA) } \geq 0
\end{aligned}
$$

The calculations may be performed quickly using a programmable calculator, or they may be extracted from the appropriate volume of the National Imagery and Mapping Agency's Sight Reduction Tables for Air Navigation in a publication referred to as Pub. No. 249. This method enables the observer to use any of the navigational bodies available at the appropriate fix time. Here is a brief review:

- Compute a DR for the time of the position, using preflight or inflight data.
- Determine the necessary entering values for the Pub. 249 volume being used (Lat, LHA, Dec contrary, or same) and extract all the necessary values of computed altitude (Hc) and azimuth angle (Z).
- After making all the necessary conversions and corrections (Chapter 10), compare the Ho and
corrected Hc. This difference is the intercept. If the Ho equals the corrected Hc , then the circle of equal altitude passed through the plotting position. If the Ho is greater than the Hc, the difference is plotted in the direction of the true azimuth (Zn). The Zn represents the azimuth from the observer's position to the subpoint. If the Ho is less than the Hc, plot the difference 180° from the Zn .
- NOTE: If HO is MOre, plot TOward the subpoint (HO MO TO)

Example: The assumed position is $38^{\circ} \mathrm{N}, 121^{\circ} 30^{\prime} \mathrm{W}$ for a shot taken at 1015 Z on Aldebaran. The Ho is $32^{\circ} 14^{\prime}$. The Hc is determined to be $32^{\circ} 29^{\prime}$ and the Zn is 120°. A comparison of Ho and Hc determines the intercept to be 15 NM away (15A).

Plotting LOP Using Zn Method

1. Plot the assumed position and set the intercept distance on the dividers. [Figure 11-3]
2. Draw a dashed line through the assumed position toward the subpoint.
3. Span intercept distance along dashed Zn line.
4. Place plotter perpendicular to Zn .
5. Draw LOP along plotter as shown in Figure 11-3.

Plotting LOP Using Flip-Flop Method

1. Plot the assumed position and set the intercept distance on the dividers. [Figure 11-4]
2. Measure 120° of the Zn with point A of the dividers on the assumed position and place point B of the dividers down. In this case, away from 120° or in the direction

Figure 11-2. Line of position computed by intercept method.

Figure 11-3. Celestial line of position using true azimuth method.
of 300° from the assumed position. Slide the plotter along the dividers until the center grommet and the 100/200-mile mark are lined up directly over point B of the dividers marking the intercept point.
3. Remove point A of the dividers from the assumed position, keeping point B in place. Flip point A (that was on the assumed position) across the plotter, at the same time expanding the dividers so that point A can be placed on the chart at the $90^{\circ} / 270^{\circ}$ mark of the plotter.
4. Flop the plotter around and place the straight edge against the perpendicular, which is established by the dividers.
5. Draw LOP along the plotter as shown in Figure 11-4.

When using the intercept method, remember:

- For some assumed position near the DR position, find the Hc and Zn of this body for the time of the observation. This is done with the aid of celestial tables, such as Pub. No. 249 or a programmable calculator.
- Obtain needed corrections, sextant correction, refraction, etc., and apply these to the Hc by reversing the sign. Remember, we are striving to derive a precomputed value to ensure the correct body is shot. Measure the altitude (Ho) of the celestial body with the sextant and record the midtime of the observation.
- Find the intercept, which is the difference between Ho and Hc. Intercept is toward the subpoint if Ho is greater than Hc , and away from the subpoint if Ho is smaller than Hc.
- From the assumed position, measure the intercept toward or away from the subpoint (in the direction of Zn
or its reciprocal) and locate a point on the LOP. Through this point, draw the LOP perpendicular to the Zn .

Additional Plotting Techniques

The preceding techniques involve the basic plotting procedures used on most stars and the bodies of the solar system. However, there are certain techniques of plotting that are peculiar to their own celestial methods; for example, the plotting of LOPs obtained by using Polaris, which is discussed later. Also, certain precomputation techniques lend themselves more readily to other plotting techniques, such as preplotting the true azimuths or plotting the fix on the DR computer.

These last plotting techniques are discussed in Pub. No. 249 in the section on precomputation. Other special techniques are discussed in the section on curves, in which the celestial observation is plotted on a graph rather than on the chart.

Interpretation of an LOP

Navigation has two aspects-the mechanical and the interpretive. The mechanical aspect includes operation and reading of instruments, simple arithmetical calculations, plotting, and log keeping. The interpretive aspect is the analysis of the data that have been gathered mechanically. These data are variable and subject to error. You must convert them into probabilities as to the position, track, and GS of the aircraft and the direction and speed of the wind. The more these data are subject to error, the more careful the interpretations must be and the less mechanical the work can be. LOPs and fixes especially require careful interpretation. It is convenient to think of a fix as the true position of the aircraft and of the LOP as a line passing through this position, but these definitions are optimistic. It is almost impossible

Figure 11-4. Plotting celestial line of position using flip-flop method.
to make a perfect observation and plot a perfect LOP. Therefore, a LOP passes some place near this position, but not necessarily through it, and a fix determined by the intersection of LOPs is simply the best estimate of this position on the basis of one set of observations. In reality, a fix is a most probable position (MPP) and a LOP is a line of MPP.

The best interpretation of LOPs and fixes means they are used, to the best advantage, with DR. But good interpretation cannot compensate for poor LOPs, nor can good LOPs compensate for careless DR. To get good results, every precaution must be taken to ensure the accuracy of LOPs and exact DR calculations.

Intelligent interpretation requires fine judgment, which can be acquired from experience. You can be guided, however, by certain well-established, though flexible, rules. The following discussion pertains especially to celestial LOPs and fixes. It also applies to LOPs and fixes established by radio and, to some extent, to those obtained by map reading.

Single LOP

Previous discussions dealt with the basic plotting of a LOP and errors in LOPs, but they did not show the actual mechanics of the plotted corrections that must be applied. The LOP must be corrected for Coriolis or rhumb line correction and also for precession and/or nutation correction if it is based on a Volume 1 star shot. Coriolis or rhumb line correction becomes a very significant correction at higher speeds and latitudes. For example, suppose the correction determined from the Coriolis or rhumb line correction table is 9 NM right (of the track). The LOP must be moved a distance of 9 NM to the right of track. This can be done either by moving the assumed position prior to plotting or by moving the LOP

Figure 11-5. Two methods of coriolis/rhumb line correction.

Figure 11-6. Two methods of coriolis/rhumb line and precession/nutation correction.

Figure 11-7. Most probable position by C-plot.

A formula has been devised to position the observer along the perpendicular to the LOP according to the time factor. The formula is:

$$
\frac{d}{t}=\frac{p}{t+p}
$$

where t is time in minutes, p is the perpendicular distance between the DR position and the LOP, and d is the distance from the DR position for the time of the MPP measured along the perpendicular to the LOP. Look at Figure 11-7B and C and see how the formula works for the two problems cited above if the perpendicular is 20 NM in length. In Figure 11-7B, t is 15 minutes and p is 20 NM , so the MPP would be located along the perpendicular about $81 / 2$ NM from the DR position.

$$
\frac{\mathrm{d}}{15}=\frac{20}{15+20} \quad \mathrm{~d}=\frac{300}{35}=8.57 \mathrm{NM}
$$

Now, consider Figure 11-7C where t is 1 hour 25 minutes or 85 minutes, p is 20 NM and, in this case, the MPP would be over 16 NM away from the DR position along the perpendicular to the LOP.

$$
\frac{\mathrm{d}}{85}=\frac{20}{85+20}
$$

$$
\mathrm{d}=\frac{1700}{105}=16.2 \mathrm{NM}
$$

If you prefer not to use the formula, a simple table can be easily constructed to solve for d with entering arguments of t and p. [Figure 11-8] The table could easily be enlarged to handle larger values of t and p. In most fixes, the DR position is so close to the LOP that the midpoint between these two can be considered the MPP. A good rule to use is to take the midpoint of the perpendicular if the total distance between the DR position and the LOP is 10 NM or less. If the value of p is greater than 10 NM , use a table or the formula to determine

\mathbf{P}	"t" time (minutes)				
$\mathbf{1}$	10 m	15 m	30 m	60 m	
12	5	7	9	10	
14	6	7	10	11	
16	6	8	10	13	
18	6	8	11	14	
20	7	9	12	15	
25	7	9	14	18	
30	8	10	15	20	
35	8	10	16	22	
40	8	11	17	24	
45	8	11	18	26	
50	8	12	19	27	
55	9	12	19	29	
60	9	12	20	30	
To the closest NM values of "d" in the formula					

Figure 11-8. To solve for distance.
the MPP. Up to this point, determination of the MPP has been rather mechanical. Experienced navigators frequently further adjust the position of the MPP for other factors not yet considered. For example, if the LOP is carefully obtained under good conditions or if it is the average of several LOPs, you may further weight the MPP in the direction of the LOP by an amount that judgment dictates. However, the reverse may be true if the LOP is obtained under adverse conditions of rough air. In the latter case, you might move the MPP closer to the DR position by some amount determined by sound judgment.

Further, consider the validity of the DR position in relation to factors other than time. A DR position at the end of 40 minutes would be more reliable with Doppler drift and GS versus one based on metro information. These factors may also adjust the original MPP closer to or farther away from the DR position, along the perpendicular. However, these last mentioned factors are judgment values that come only with experience. In fact, with experience you may mentally calculate all the factors involved and arrive at the final position of the MPP without recourse to a formula or table.

Finding a Celestial Fix Point

Up to this point, only the single celestial LOP and what to do with it have been considered. Now, the celestial fix should be considered. To establish a fix, two or more LOPs must be obtained. Since, in most cases, two or more LOPs cannot be obtained simultaneously, they must be converted to a common time. For example, a LOP obtained at 1010 must be converted to the LOP obtained at the fix time of 1014. There are several methods for making this conversion that are discussed in this chapter. Consideration is also given to the planning of the fix and the final interpretation of the fix itself.

Conversion of LOPs to a Common Time

Moving the LOP

One method of converting LOPs to a common time is to move the LOP along the best-known track for the number of minutes of GS necessary for the time conversions. This method is similar to that used in correcting for Coriolis or rhumb line and precession or nutation. For example, suppose the track is 110° and the GS is 300 knots. LOPs are for 1500 , 1504 , and 1508 , and a fix is desired at 1508 . This means the 1500 LOP must be moved to the time of the fix using the track and 8 minutes of the best known GS. The 1504 LOP must be moved to the time of the fix using the track and 4 minutes of GS. The 1508 LOP is already at the fix time, so it requires no movement. Figure 11-9 shows the method of conversion as it is completed on the chart.

Figure 11-9. Conversion of lines of position to a common time.

If, at any time, the LOP has to be retarded (moved back) to the time of the fix, use the following procedures. Using the reciprocal track and GS, obtain the correction in the regular manner for the number of minutes of difference. For example, suppose the fix is at 1800 and the last shot is at 1802 .

Retarding the LOP 2 minutes of GS on a track of 70° would be the same as advancing it 2 minutes of GS on a track of 250°.

Motion of Observer Tables

A second method of conversion of LOPs to a common time is with a Motion of the Observer table such as the one in Pub. No. 249. This table gives a correction to be applied to the Ho or Hc so that the LOP plots in its converted position. The correction obtained from Table 1 in all volumes of Pub. No. 249 is for 4 minutes of time. An additional table allows you to get the correction for the number of minutes needed. For example, suppose the LOP needs to be advanced for 11 minutes and the Ho of the body is $33^{\circ} 29^{\prime}$ and Zn is 080°.

The track of the aircraft is 020 o and the GS is 240 knots. In Table 1, Correction for Motion of the Observer for 4 minutes of Time [Figure 11-10], the entering arguments is Rel Zn and GS. Rel Zn is azimuth relative to course (Zn minus track or track minus Zn). Subtract the smaller angle from the larger and enter the table with the answer. In this case, $\mathrm{Zn}-$ track $=$ $080^{\circ}-020^{\circ}=060^{\circ}(\mathrm{Rel} \mathrm{Zn})$ and GS is 240 knots. Entering this table with these arguments, the correction listed is $+08^{\prime}$ for 4 minutes of time.

Use the whiz wheel to calculate the total motion for 11 minutes. In this case, the 11-minute correction totals 22'. By applying any other correction (refraction, sextant correction, etc.), a total adjustment is derived. By changing the sign, this total may be applied to the Hc. To apply the correction to the Ho, the sign of the adjustment would remain the same. Apply the adjustment to the intercept as the rules state in Table 1. In each case, the resultant intercept would be the same.

Suppose the Hc was $33^{\circ} 57^{\prime}$. Applying the correction -22 yields $33^{\circ} 35^{\prime}$. Comparing this with our Ho $33^{\circ} 29^{\prime}$ results in an intercept of 6 NM away. If you decide to apply the correction to the Ho, $33^{\circ} 29^{\prime}+22^{\prime}$ yields $33^{\circ} 51^{\prime}$. Comparing this to the Hc $33^{\circ} 57^{\prime}$ yields the same result, 6 NM away. When using the Motion of the Observer table and when the fix time is earlier than the observation (LOP to be retarded), the rule for the sign of the correction is also printed below Table 1.

Moving the Assumed Position

Another method of converting LOPs to a common time is to move the assumed position. This method is recommended for shots 4 minutes apart computed to give all three bodies a single assumed position. However, it is not limited to that type of computation. The assumed position is moved along the best-known track at the best-known GS. For example, again suppose the track is 330° and the GS 300 knots. LOPs are for 1500,1504 , and 1508 and a fix is desired at 1508 . [Figure 11-11] Since the first LOP would have to be advanced

Rel. Zn	Correction for 4 minutes of time																												Rel. Zn
	Groundspeed (knots)																												
			150	180	210	0240	40270	300	330	360	390	420	450	480	510	540	570	600	630	660	690	720	750	780	810	840	870	900	
000	+6		+10	+12	+14	$4+16$	$6+18$	+20	+22	+24	+26	+28	+30	+32	+34	+36	+38	+40	+42	+44	+45	+48	+50	+52	+54	+56	+58	+60	000
005	6	8	10	12	14	416	618	20	22	24	26	28	30	32	34	36	38	40	42	44	45	48	50	52	54	56	58	60	355
010	6	8	10	12	14	416	618	20	22	24	46	28	30	32	33	35	37	39	41	43	45	47	49	51	53	55	57	59	350
015	6	8	10	12	14	415	517	19	21	23	25	27	29	31	33	35	37	39	41	43	44	46	48	50	52	54	56	58	345
020	6	8	9	11	13	315	517	19	21	123	24	26	28	30	32	34	36	38	39	41	43	45	47	49	51	53	55	56	340
025	5	7	9	11	13	315	516	18	20	022	24	25	27	29	31	33	34	36	38	40	42	44	45	47	49	51	53	54	335
030	+5	+7	+9	+10	+12	$2+14$	4 +16	+17	+19	$9+21$	+23	+24	+26	+28	+29	+31	+33	+35	+35	+38	+40	+42	+43	+45	+47	+48		+52	330
035	5	7		10	11	113	315	16		820	21	23	25	26	28	29	31	33	34	36	38	39	41	43	44	46	48	49	325
040	5	6	8	9	11	112	214	15	17	$7 \quad 18$	80	21	23	25	26	28	29	31	32	34	35	37	38	40	41	43	44	46	320
045	4	6	7	8	10	011	113	14	16	617	78	20	21	23	24	25	27	28	30	31	33	34	35	37	38	40	41	42	315
050	4	5	6	8		910	012	13	14	415	17	18	19	21	22	23	24	26	27	28	30	31	32	33	35	36	37	39	310
055	3	5	6	7		89	910	11	13	314	415	16	17	18	20	21	22	23	24	25	25	28	29	30	31	32	33	34	305
060	+3	+4	+6	+6	+7	$7+8$	8 +9	+10	+11	$1+12$	+13	+14	+15	+15	+17	+18	+19	+20	+21	+22	+23	+24	+25	+26	+27	+28	+29	+30	300
065	3	3	4	5		67	78	8		910	11	12	13	14	14	15	16	17	18	19	19	20	21	22	23	24	25	25	295
070	2	3	3	4		55	56	7		88	89	10	10	11	12	12	13	14	14	15	16	16	17	18	18	19	20	21	290
075	2	2	3	3		$4 \quad 4$	45	5		$6 \quad 6$	67	7		8	9	9	10	10	11	11	12	12	13	13	14	14	15	16	285
080	1	1	2	2		23	3 3	3		$4 \quad 4$	45	5		5	6	6	7	7	7	8	8	8	9	9	9	10	10	10	280
085	+1	+1	+1	+1	+1	$1+1$	$1+2$	+2	+2	$2+2$	+2	+2	+3	+3	+3	+3	+3	+3	+4	+4	+4	+4	+4	+5	+5	+5	+5	+5	275
090	0	0	0	0		00	00	0		00	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	270
095		-1	-1	-1		$1-1$	1 -2	-2		$2-2$	-2	-2		-3	-3	-3	-3				-4	-4	-4		-5	-5	-5	-5	265
100	1	1		2		23	33	3		$4 \quad 4$		5		6	6	6	7	7	7	8	8	8	9	9	9	10	10	10	260
105	2	2	3	3		$4 \quad 4$	45	5		66	67	7	8	8	9	9	10	10	11	11	12	12	13	13	14	14	15	16	255
110	2	3	3	4		5 5	56	7		88	89	10	10	11	12	12	13	14	14	15	16	16	17	18	18	19	20	21	250
115	3	3				67	78	8		910				14		15	16		18	19	19	20	21	22	23	24	25	25	245
120	3	4	5	6		78	89	10		112	213	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	240
125	-3	-5		-7	-8	$8-9$	9-10	-11	-13	-14	-15	-16	-17	-18	-20	-21	-22		-24	-25	-26	-28	-29	-30	-31	-32		-34	235
130	4	5	6	8		910	12	13	14	415	17	18	19	21	22	23	24	25	27	28	30	31	32	33	35	36	37	39	230
135	4	6	7	8	10	011	112	14	16	$6 \quad 17$	78	20	21	23	24	25	27	28	30	31	33	34	35	37	38	40	41	42	225
140	5	6	8	9	11	112	213	15	17	718	20	21	23	25	26	28	29	31	32	34	35	37	38	40	41	43	44	46	220
145	5	7	8	10	11	113	315	16	18	820	21	23	25	26	28	29	31	33	34	35	38	39	41	43	44	46	48	49	215
150	5	7	9	10	12	214	416	17		921	123	24	26	28	29	31	33	35	36	38	40	42	43	45	47	48	50	52	210
155	-5	-7	-9	-11		- 15	5-16	-18	-20	-22	-24	-25	-27	-29	-31	-33	-34	-36			-42	-44	-45		-49	-51		-54	205
160	6	8	9	11	13	315	517	19	21	23	24	26	28	30	32	34	35	38	39	41	43	45	47	49	51	53	55	56	200
165	6	8	10	12	14	415	517	19	21	23	25	27	29	31	33	35	37	39	41	43	44	46	48	50	52	54	56	58	195
170	6	8	10	12	14	416	618	20	22	24	26	28	30	32	33	35	37	39	41	43	45	47	49	51	53	55	57	59	190
175	6	8	10	12	14	416	618	20	22	24	46	28	30	32	34	36	38	40	42	44	45	48	50	52	54	56	58	60	185
180	-6		-10	-12	-14	4-16	6-18	-20	-22	-24	-26	-28	-30	-32	-34	-36	-38	-40		-44	-46	-48	-50	-52	-54	-56		-60	180

Figure 11-10. Entering arguments are relative true azimuth and groundspeed.

Interval of time	Correction for less than 4 minutes of time																														Interval of time	
	Value from 4 minute motion tables (for values greater than 60')																															
	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60		
m s																															m	s
$0 \quad 10$	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	0	10
20	0	0	0	1	1	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4	4	4	5	5	5		20
30	0	0	1	1	1	2	2	2	2	2	3	3	3	4	4	4	4	4	5	5	5	6	6	6	6	6	7	7	7	8		30
40	0	1	1	1	2	2	2	3	3	3	4	4	4	5	5	5	6	6	6	7	7	7	8	8	8	9	9	9	10	10		40
50	0	1	1	2	2	2	3	3	4	4	5	5	5	6	6	7	7	8	8	8	9	9	10	10	10	11	11	12	12	12		50
100	0	1	2	2	2	3	4	4	4	5	6	6		7	8	8	8	9	10	10	10	11	12	12	12	13	14	14	14	15	1	00
10	1	1	2	2	3	4	4	5	5	6	6	7	8	8	9	9	10	10	11	12	12	13	13	14	15	15	16	16	17	18		10
20	1	1	2	3	3	4	5	5	6	7	7	8	9	9	10	11	11	12	13	13	14	15	15	16	17	17	18	19	19	20		20
30	1	2	2	3	4	4	5	6	7	8	8	9	10	10	11	12	13	14	14	15	16	16	17	18	19	20	20	21	22	22		30
40	1	2	2	3	4	5	6	7	8	8	9	10	11	12	12	13	14	15	16	17	18	18	19	20	21	22	22	23	24	25		40
50	1	2	3	4	5	6	6	7	8	9	10	11	12	13	14	15	16	16	17	18	19	20	21	22	23	24	25	26	27	28		50
200	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	2	00
10	1	2	3	4	5	6	8	9	10	11	12	13	14	15	16	17	18	20	21	22	23	24	25	26	27	28	29	30	31	32		10
20	1	2	4	5	6	7	8	9	10	12	13	14	15	16	18	19	20	21	22	23	24	25	27	28	29	30	32	33	34	35		20
30	1	2	4	5	6	8	9	10	11	12	14	15	16	18	19	20	21	22	24	25	26	28	29	30	31	32	34	35	36	38		30
40	1	3	4	5	7	8	9	11	12	13	15	16	17	19	20	21	23	24	25	27	28	29	31	32	33	35	36	37	39	40		40
50	1	3	4	6	7	9	10	11	13	14	16	17	18	20	21	23	24	26	27	28	30	31	33	34	35	37	38	40	41	42		50
300	2	3		6	8	9	10	12	14	15	16	18	20	21	22	24	26	27	28	30	32	33	34	36	38	39	40	42	44	45	3	00
10	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27	28	30	32	33	35	36	38	40	41	43	44	46	48		10
20	2	3	5	7	8	10	12	13	15	17	18	20	22	23	25	27	28	30	32	33	35	37	38	40	42	43	45	47	48	50		20
30	2	4	5	7	9	10	12	14	16	18	19	21	23	24	26	28	30	32	33	35	37	38	40	42	44	46	47	49	51	52		30
40	2	4	6	7	9	11	13	15	16	18	20	22	24	26	28	29	31	33	35	37	38	40	42	44	46	48	50	51	53	55		40
50	2	4	6	8	10	12	13	15	17	19	21	23	25	27	29	31	33	34	35	38	40	42	46	46	48	50	52	54	56	58		50
400	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	4	00
		Tim	of	fix			ign	om	4 m	in.	able			ob	serve	d alt	tud				ta	ulate	d	tud				inte	cep			
			r th erva er erva	han ation than ation					+ + + -						Ad Subt Subt Ad	ract ract d							ract d rac					Towa Awa Awa Towa				

Figure 11-10. Entering arguments are relative true azimuth and groundspeed (continued).

Figure 11-11. Moving assumed positions.
40 NM (8 minutes at 300 knots), the same result is realized by advancing the assumed position 40 NM parallel to the best-known track. The 1504 LOP must be advanced 20 NM; therefore, the assumed position is advanced 20 NM miles
parallel to the best-known track. The third shot requires no movement, and it is plotted from the original assumed position.

It should be noted that the first shot is always plotted from the assumed position, which is closest to destination. In this method, if observations are precomputed and the assumed position is moved prior to shooting, the following procedure is used when shooting is off schedule. For every minute of time that the shot is taken early, move the assumed position 15 minutes of longitude to the east. For every minute of time that the shot is taken late, move the assumed position 15 minutes of longitude to the west. In addition, the affected LOP must be moved along the best-known track for the number of minutes of GS the observation was early or late. If the shot was early, advance the LOP; if the shot was late, retard the LOP.

Planning the Fix

In selecting bodies for observation, one should generally consider azimuth primarily and such factors as brightness, altitude, etc., secondarily. If all observations were precisely correct in every detail, the resulting LOPs would meet at a point. However, this is rarely the case. Three observations
generally result in LOPs forming a triangle. If this triangle is not more than 2 or 3 miles on a side under good conditions and 5 to 10 miles under unfavorable conditions, there is normally no reason to suppose that a mistake has been made. Even a point fix, however, is not necessarily accurate. An uncorrected error in time, for instance, would require the entire fix to be moved eastward if observations were early and westward if observations were late, at the rate of 1 minute of longitude for each 4 seconds of time.

In a two-LOP fix, the ideal cut of the LOPs is 90°. In Figure 11-12, a 90° cut with a 5 NM error in one LOP causes a 5 NM error in the fix. If the acute angle between the LOPs is 30°, a 5 NM error in one LOP causes a 10 NM error in the fix. Thus, with a two-LOP fix, an error in one LOP causes at least an equal error in the fix; the smaller the acute angle between the LOPs, the greater the fix error caused by a given error in one LOP. Of course, if both LOPs are in error, the fix may be thrown off even more. In a three-LOP fix, the ideal cut of the LOPs is 60° (star azimuths 120° apart). With this cut, a 3 NM error in any one LOP causes a 2 NM error in the fix. With any other cut, a 3 NM error in any one LOP causes more than a 2 NM error in the fix. In a three-star fix, the cut will be 60° if the azimuths of the stars differ by 60° or if they differ by 120°. If there is any unknown constant error in the observations, all the Hos will be either too great or too small.

Notice in Figure 11-13 that, if stars are selected whose azimuths differ by 120°, this constant error of the Hos causes a displacement of the three LOPs, either all toward the center
or all away from the center of the triangle. In either case, the position of the center of the triangle is not affected. If you use any three stars with azimuths outside a 180° range, any constant error in observations tends to cancel out.

Figure 11-13. Effect of azimuth on accuracy of fix.

Figure 11-12. Effect of cut on accuracy of a fix.

The three-star fix has two distinct advantages over the two-star fix. First, it is the average of three observations. Second, selecting the stars carefully can counteract the effect of constant errors of observation. There is also a third advantage. Each pair of two LOPs furnishes a rough check on the third. In resolving an observation into a LOP, you might possibly make a gross error; for example, obtaining an LHA that is in error by a whole degree. Such an error might not be immediately apparent. Neither would such a discrepancy come to immediate attention in a two-LOP fix. However, this third advantage does not apply when a single LHA is used in solving all LOPs, such as is done when precomputing and using motion corrections to resolve all LOPs to a common time. Because of these three advantages, it is evident that a three-star fix should be used, rather than a two-star fix, when possible.

Whatever the number of observations, common practice, backed by logic, is to take the center of the figure formed unless there is reason for deviating from this procedure. Center is meant as the point representing the least total error of all lines considered reliable. With three LOPs, the center is considered that point within the triangle equidistant from the three sides. It may be found by bisecting the angles, but is usually located by eye.

Chapter Summary

Because of all the factors involved, a certain amount of judgment is necessary, along with the proper use of the mechanics comprising celestial navigation. When using a single LOP or a fix, you have to take into consideration the existing conditions and weigh the DR information against the information obtained from the LOP. An accurate DR position should always be computed.

The C-Plot formula helps place the MPP with a single LOP, but you might want to make further adjustments to the final position. The formula is:

$$
\frac{\mathrm{d}}{\mathrm{t}}=\frac{\mathrm{p}}{\mathrm{t}+\mathrm{p}}
$$

Remember, d is the distance measured along a perpendicular from the DR position to the LOP. In the case of the two- or three-star fix, planning plays a very important part. Selecting stars whose azimuths differ by 120° for a three-star fix minimizes errors in the fix position. In two-star fixes, the ideal azimuth separation is 90°. Also, when dealing with more than one LOP, it is necessary to resolve the LOPs to a common time. This adjustment can be accomplished by moving the assumed position, by moving the LOPs, or by applying a correction factor to the Hc or Ho.

Chapter 12

Speciil Celestiail Tedhiquiles

Introduction

This chapter describes some techniques that may not be used every day and under all circumstances but are valuable alternatives from normal precomping procedures. Most of these techniques save time by eliminating either some extractions or computations. Some navigational techniques and planning procedures are also discussed.

Determining Availability of Celestial Bodies

By doing a quick comparison of Greenwich hour angle (GHA) to the observer's position, it is easy to determine the availability of celestial bodies. For example, the observer anticipates being at $18^{\circ} \mathrm{N} 135^{\circ} \mathrm{W}$ at 0015 Z on 28 September 1995. There are several bodies listed in the Air Almanac, but not all of them are available for observation. To determine availability, take the observer's longitude and look 80° either side of it. Within this range, compare the GHA of a body. Looking at Figure 12-1, we see that the sun, moon, Venus, and Jupiter are within the 80° range and are therefore usable. Saturn is outside of the 80° range, so it is not usable. The declination (Dec) of a body is not normally a factor; however, at high latitudes a body may not be available when its subpoint is near the pole opposite the observer.

Latitude by Polaris

Polaris is the polestar, or North Star. Because Polaris is approximately 1° from the North Pole, it makes a small diurnal circle and seemingly stays in about the same place all night. This fact makes Polaris very useful in navigation. With certain corrections, it serves as a reference point for direction and for latitude in the Northern Hemisphere. Latitude by Polaris is a quick method of obtaining a latitude line of position (LOP); only the tables given in the Air Almanac are needed.

Obtaining Latitude by Polaris

A latitude by Polaris LOP is obtained by applying the Q correction to the corrected observed altitude. [Figure 12-2] This adjusts the altitude of the pole, which is equal to the navigator's latitude. The Q correction table is in the back of the Air Almanac. The entering argument for the table is exact local hour angle (LHA) of Aries. The effect of refraction is not included in Q correction, so the observed
altitude must be fully corrected. When refraction is used for a latitude by Polaris LOP, it is applied to the observed altitude and the sign of the correction is negative. A Polaris LOP can also be plotted using the intercept method. In this case, the Hc is computed by reversing the sign of the Q correction and applying it to the assumed latitude (rounded off to the nearest degree). Refraction is positive when applied to get an Hc for the intercept method.

Obtaining Azimuth of Polaris

For either method, the azimuth of Polaris is obtained from the Azimuth of Polaris table found in the Air Almanac or in the Pub. No. 249. [Figure 12-2] Whether plotted as an intercept or a latitude, the assumed position should be corrected for Coriolis, or rhumb line, and precession, or nutation. The resulting LOPs should fall in the same place for either method. To plot the LOP using the latitude method, choose the longitude line closest to the DR and plot perpendicular to the longitude line. For the intercept method, use the assumed latitude and plot the intercept normally using the azimuth of Polaris.

Latitude by Polaris Example

On 18 April 1995 for Greenwich mean time (GMT) 1600 at $23^{\circ} 10^{\prime} \mathrm{N} 120^{\circ} \mathrm{W}$, with an observed altitude $23^{\circ}-06^{\prime}$ at $31,000^{\prime}$. When doing a latitude by Polaris you must use the exact latitude and longitude. See Figure 12-3 for plotting.

GHA	$086^{\circ}-18^{\prime}$
Longitude (West)	$-120^{\circ}-00^{\prime}$
LHA	$326^{\circ}-18^{\prime}$
True Course (TC)	090°
Groundspeed (GS)	400 knots
Coriolis/rhumb line	7 R
Corrected Observed Altitude	$23^{\circ}-06^{\prime}$

(Day 271) Greenwich A. M. 1995 September 28 (Thursday) 541															
$\begin{gathered} \text { UT } \\ \text { (GMT) } \end{gathered}$	\bigcirc Sun		$\begin{aligned} & \text { Aries } \\ & \text { GHA } \Upsilon \end{aligned}$	Venus 1.4		Jupiter 2.0		Saturn 0.7			(1) Moon		Lat.	Moon rise	Diff.
	GHA	Dec.		GHA	Dec.	GHA	Dec.	GHA		Dec.	GHA	Dec.			
$h \quad m$	D	-	-	D	。	-	- .					- ,	N		
0000	18215.7	S 145.0	618.1	17223	S 448	11752	52131		16	S 600	14129	S 1506	-	$h \quad m$	m
10	18445.8	45.1	848.6	17453		12022			46		14353	08			\#
20	18715.8	45.3	1119.0	17723		12253			17		14618	09	72	$\begin{array}{ll}13 & 34 \\ 12 & 43\end{array}$	+54
30	18945.8	45.5	1349.4	17953		12523			47		14842	10	70	1243	+54
40	19215.9	45.6	1619.8	18223		12753			18		15106	11	68	$\begin{array}{ll}12 & 11 \\ 11 & 48\end{array}$	48
50	19445.9	45.8	1850.2	18453		13024			48		15331	12	66	$\begin{array}{ll}11 & 48 \\ 11 & 28\end{array}$	45
0100	19715.9	S 146.0	2120.6	18723	S 449	13254	52131		18	S 600	15555	S 1513	62	1114	42
10	19946.0	46.1	2351.0	18953		13525			49		15820	15			40
20	20216.0	46.3	2621.4	19223		13755			19		16044	16	60	1102	39
30	20446.0	46.4	2851.8	18452		14025			50		16309	17	58	$10 \quad 51$	38
40	20716.1	46.6	3122.3	19722		14255			20		16533	18	56	$10 \quad 42$	37
50	20946.1	46.8	3352.7	19952		14526		41	51		16757	19	54	1033	36
0200	21216.1	S 146.9	3623.1	20222	S 450	14756	52132	44	21	S 600	17022	S 1520	52	1026	36
10	21446.2	47.1	3853.5	20452		15027			52		17246	21	50		
20	21716.2	47.2	4123.9	20722		15257			22		17511	23	45	1019	35
30	21946.3	47.4	4354.3	20952		15527			52		17735	24	40	$10 \quad 05$	34
40	22216.3	47.6	4624.7	21222		15758			23		17959	25	35	0953	33
50	22446.3	47.7	4855.1	21452		16028			53		18224	26	30	$\begin{array}{ll} 09 & 43 \\ 09 & 35 \end{array}$	32 31

Figure 12-1. A quick check of body availability.

For determining the latitude from a sextant altitude

LHA Arie		Q	LHA Aries		Q	LHA Aries		Q	$\begin{aligned} & \text { LHA } \\ & \text { Aries } \end{aligned}$		Q	LHA Aries		Q									
。		I			I													。					
358	46	-36	86	00	-29	120	50	-4	153	30	+21	227	46	+44	281	46	+19	314	17	-6	349	32	-31
0	50	-37	87	38	-28	122	07	-3	154	56	+22	233	14	+43	283	10	+18	345	33	-7	351	16	-32
3	01	-38	89	14	-27	123	23	-2	156	23	+23	237	18	+42	284	32	+17	316	50	-8	353	02	-33
5	20	-39	90	49	-26	124	39	-1	157	51	+24	240	42	+41	285	55	+16	318	07	-9	354	53	-34
7	48	-40	92	21	-25	125	54	-0	159	21	+25	243	42	+40	287	16	+15	319	24	-10	356	47	-35
10	29	-41	93	52	-24	127	11	-1	160	53	+26	246	25	+39	288	36	+14	320	42	-11	358	46	-36
13	27	-42	95	21	-23	128	27	-2	162	26	+27	248	55	+38	289	56	+13	322	00	-12	0	50	-37
16	49	-43	96	49	-22	129	43	-3	164	01	+28	251	15	+37	291	16	+12	323	19	-13		01	-38
20	50	-44	98	15	-21	130	59	-4	165	37	+29	253	28	+36	292	35	+11	324	38	-14	5	20	-39
26	13	-45	99	40	-20	132	16	-5	167	17	+30	255	33	+35	293	53	+10	325	57	-15	7	48	-40
47	38	-44	101	05	-19	133	32	-6	168	58	+31	257	34	+34	295	11	+9	327	18	-16	10	29	-41
53	01	-43	102	28	-18	134	49	-7	170	43	+32	259	29	+33	296	28	+8	328	39	-17	13	27	-42
57	02	-42	103	51	-17	136	05	-8	172	31	+33	261	20	+32	297	46	+7	330	00	-18	16	49	-43
60	24	-41	105	12	-16	137	23	-9	174	22	+34	263	08	+31	299	02	+6	331	23	-19	20	50	-44
63	22	-40	106	33	-15	138	40	-10	176	17	+35	264	53	+30	300	19	+5	332	46	-20	26	13	-45
66	03	-39	107	54	-14	139	58	-11	178	18	+36	266	34	+29	301	35	+4	334	11	-21	47	38	-44
68	31	-38	109	13	-13	141	16	-12	180	23	+37	268	14	+28	302	52	+3	335	36	-22	53	01	-43
70	50	-37	110	32	-12	142	35	-13	182	36	+38	269	50	+27	304	08	+2	337	02	-23	57	02	-42
73	01	-36	111	51	-11	143	55	-14	184	56	+39	271	25	+26	305	24	+1	338	30	-24	60	24	-41
75	05	-35	113	09	-10	145	15	-15	187	26	+40	272	58	+25	306	40	0	339	59	-25	63	22	-40
77	04	-34	114	27	-9	146	35	-16	190	09	+41	274	30	+24	307	57	-1	341	30	-26	66	03	-39
78	58	-33	115	44	-8	147	56	-17	193	09	+42	276	00	+23	309	12	-2	343	02	-27	68	31	-38
80	49	-32	117	01	-7	149	19	-18	196	33	+43	277	28	+22	310	28	-3	344	37	-28	70	50	-37
82	35	-31	118	18	-6	150	41	-19	200	37	+44	278	55	+21	311	44	-4	346	13	-29	73	01	-36
84	19	-30	119	34	-5	152	05	-20	206	05	+45	280	21	+20	313	01	-5	347	51	-30	75	05	35
86	00		120	50		153	30		227	46		281	46		314	17		349	32		77	04	

In critical cases, ascend Q, which does not include refraction, is to be applied to the corrected sextant altitude of Polaris.
Polaris: Mag. 2.1, SHA $323^{\circ} 04^{\prime}$, Dec N89º 14:7

Azimuth of Polaris, 1995

LHA Aries	0°	30°	Latitude			65°	70°	LHA Aries	$0^{\circ} \quad 30^{\circ}$		Latitude			65°	70°
			50°	55°	60°						50°	55°	60°		
-	-	-	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-
0	0-5	0-5	0-7	0-8	0-9	1-1	1-4	180	359-5	359-5	359-3	359-2	359-1	359-0	358-7
10	0-3	0-4	0-5	0-6	0-7	0-8	1-0	190	359-7	359-6	359-5	359-4	359-3	359-2	359-0
20	0-2	0-3	0-3	0-4	0-4	0-5	0-7	200	359-8	359-7	359-7	359-6	359-6	359-5	359-4
30	0-1	0-1	0-1	0-2	0-2	0-2	0-3	210	359-9	359-9	359-9	359-8	359-8	359-8	359-7
10	0-0	0-0	359-9	359-9	359-9	359-9	359-9	220	0-0	0-0	0-1	0-1	0-1	0-1	0-1
50	359-8	359-8	359-7	359-7	359-7	359-6	359-5	230	0-2	0-2	0-3	0-3	0-3	0-4	0-5
60	359-7	359-7	359-5	359-5	359-4	359-3	359-1	240	0-3	0-3	0-5	0-5	0-6	0-7	0-8
70	359-6	359-5	359-4	359-3	359-2	359-0	358-8	250	0-4	0-5	0-6	0-7	0-8	1-0	1-2
80	359-5	359-4	359-2	359-1	359-0	358-8	358-5	260	0-5	0-6	0-8	0-9	1-0	1-2	1-5
90	359-4	359-3	359-1	358-9	358-8	358-5	358-2	270	0-6	0-7	0-9	1-0	1-2	1-4	1-7
100	359-3	359-2	358-9	358-8	358-6	358-4	358-0	280	0-7	0-8	1-0	1-2	1-3	1-6	1-9
110	359-3	359-2	358-9	358-7	358-5	358-3	357-9	290	0-7	0-8	1-1	1-3	1-4	1-7	2-1
120	359-2	359-1	358-8	358-7	358-5	358-2	357-8	300	0-7	0-9	1-2	1-3	1-5	1-8	2-2
130	359-2	359-1	358-8	358-7	358-5	358-2	357-8	310	0-8	0-9	1-2	1-3	1-5	1-8	2-2
140	359-3	359-2	358-9	358-7	358-5	358-3	357-9	320	0-7	0-9	1-1	1-3	1-5	1-8	2-2
150	359-3	359-2	358-9	358-8	358-6	358-4	358-0	330	0-7	0-8	1-1	1-2	1-4	1-7	2-1
160	359-4	359-3	359-0	358-9	358-8	358-5	358-2	340	0-6	0-7	1-0	1-1	1-3	1-5	1-9
170	359-4	359-4	359-2	358-1	358-9	358-7	358-4	350	0-6	0-6	0-9	1-0	1-1	1-3	1-7
180	359-5	359-5	359-3	359-2	359-1	359-0	358-7	360	0-5	0-5	0-7	0-8	0-9	1-1	1-4

When Cassiopeia is left (right), Polaris is west (east).

Figure 12-2. Polaris Q correction and azimuth tables from the Air Almanac.

Figure 12-3. Plotting the Polaris LOP.

Q (based on LHA 072-44)	-15^{\prime}
Refraction	-01^{\prime}
Latitude	$22^{\circ}-50^{\prime}$
Azimuth (LHA $326^{\circ}-18^{\prime}$, Latitude $23^{\circ} \mathrm{N}$)	000.8°

NOTE: If the Q correction table in Volume 1 is used, precession and nutation (P / N) and Coriolis, or rhumb line, must be used in plotting the LOP. This is because the Pub. No. 249 covers a 5 -year period, and the further the years get from the Epoch year, the greater the error is when using the Polaris table. P/N compensates for this error.

Intercept Method Example

Refer to the previous problem and Figure 12-3 for plotting. NOTE: Applying 10A to assumed latitude gives $22^{\circ}-50^{\prime} \mathrm{N}$, which is the same the answer in the latitude by Polaris example.
Azimuth of Polaris 359.5
Coriolis/rhumb line 7R
Assumed Lat (rounded off) $23^{\circ}-00^{\prime} \mathrm{N}$Q (reversed sign)
$+15$
Refraction +01'
Hc Polaris $23^{\circ}-16^{\prime}$
Ho Polaris $23^{\circ}-06^{\prime}$
Intercept 10A

NOTE: In these examples, all information was taken from the Air Almanac. No P/N is required.

LHA Method of Fixing

LHA Method of Obtaining Three-Star Fix

The LHA technique allows you to solve the motion problem for a three-star fix by applying a correction to the assumed position rather than computing a numerical solution on the precomp. This eliminates mathematical motion calculations, therefore reducing the chance of math errors on the precomp. To accomplish a three-LHA fix, you must plan 4 minutes between the midtime of each shot. [Figures 12-4 and 12-5] Because LHA changes 1 degree for every 4 minutes, the precomp has three successive LHAs, 1 degree apart. To correct for off-time motion, adjust the assumed position based on true course (TC) and groundspeed (GS). If a shot is planned earlier than fix time, the assumed position is advanced (down-track). For shots planned later than fix time, the assumed position is retarded (up-track).

The example in Figures 12-4 and 12-5 shows the LHA method for a 12-8-4 early shooting schedule. This shooting schedule allows the fix and/or MPP to be resolved before the fix time. To adjust the assumed positions, plot the fix time assumed position and then advance it for 4 minutes of track and GS for each body. This satisfies motion of the observer. When shooting the selected bodies, take care to shoot them exactly on the prescribed times. This eliminates motion of the body.

A variation of advancing the assumed position is to use half motions. This enables you to plot all three LOPs from one assumed position. Table 1 from Pub. No. 249 lists corrections to position of the observer. Each correction is for 4 minutes of time. To use it, enter with your relative Zn (Zn -track) and GS. Now, look at the bottom of the table and note you can apply this correction to your tabulated altitude or observed altitude. It does not matter which you choose, but note that the sign changes dependent on where you apply it. Now, take the number and multiply it by the 4 -minute increment of the shot. For example, Figure 12-6 shows the precomp for a 0300 fix using 3 LHAs and half motions. The 0248 shot, Alpheratz, relative Zn , and groundspeed were used to extract a +20 correction from Table 1. Because this shot is 12 minutes early, we need to multiply +20 by three before we apply it to the shot. Note the +60 correction was applied to the observed altitude and, therefore, kept its positive sign. The benefit of doing this is a reduction in plotting. See Figure 12-7 for the plotted LOPs. This technique can be applied to day celestial as well.

Figure 12-4. Typical example of the three LHA method.

Figure 12-5. Plotting three LHA.

D	28 Sept 95					
	TIME			0300		
	LAT			N27-18		
	LONG			W121-04		
$\begin{aligned} & P \\ & R \\ & E \\ & C \\ & C \\ & O \\ & M \\ & P \end{aligned}$	Body	Alphazet	Antares	Alkaid		
	GHA			51-25		
	CORR			-		
	SHA			-		
	GHA			51-25		
	+360			411-25		
	ASSUM LONG -W +E			W121-25		
	LHA	287	288	289/290		
	ASSUM LAT			N27-		
	DEC			-		
	TAS HC	24-56	23-45	25-03		
	d	-	-	-	\longrightarrow	\longrightarrow
	DEC	1	1	1	1	1
	CORR MC	24-56	23-45	25-03		
	HS TIME	0248	0252	0256		
	HS	24-19	23-55	25-16		
$\begin{array}{ll} C & \& \\ O & M \\ R & M \\ R & O \\ S & S \end{array}$	SEXT	0	0	0		
	REFR	-1	-1	-1		
	PA/sp/O	-	-	-		
	MOT DSS	+60	-34	-8		
	MOT BODY	-	-	-		
	TOTAL	+59	-35	-9		
	HO	25-18	23-20	25-07		
	INTCPT	22T	25A	4 T		
	ZN	069	220	315		
$\begin{array}{ll} G & \\ R & \\ \text { I } & H \\ D & D \\ & G \\ & S \end{array}$	CAIIPS					
	GZN/TH					
	MAG VAR					
	MAG HDG					
	DEV CORR					
	CH					
$\begin{aligned} & M \\ & I \\ & S \\ & C \end{aligned}$	TRACK	068	068	068		
	ZN-TR	001	152	247		
	GS	310				
	ALT	220				
	CORIOLUS	4R				
	P-N	N/A				

Figure 12-6. Half motions three LHA format.

Daytime Celestial Techniques

Daytime fixing, using celestial techniques, is rather limited because often only one body, the sun, is visible. Ordinarily, three LOPs cannot be obtained for a fix from one body, because the LOPs plot nearly parallel to each other.

The Sun Heading Shot at High Noon

The azimuth of the sun changes very rapidly when the subpoint of the sun is directly over the longitude of the observer, which is called the time of transit. The LHA at transit time is 360°. This phenomenon is more pronounced at lower latitudes as the subpoint of the sun passes closer to the observer. This makes it extremely difficult to get an accurate celestial heading shot at the transit time. Therefore, if you need a heading shot near the time of transit, you must take extra precaution to get the heading observation exactly at the precomputed fix time. If the moon or Venus is available, consider using these bodies for an accurate celestial heading. If using the sun, you should weigh the increased possibility of an inaccurate heading shot. If the accuracy is questionable, get another heading shot as the sun's rate of azimuth change slows enough to allow a more accurate shot.

Intercept Method

The intercept method is normally used in obtaining a noon day fix. If the sun passes close to the observer's position, within about 4°, the subpoint method of plotting the fix may be used. This method differs from normal procedures in that three different precomps for three different times are computed. Because of the rapid change of the sun's azimuth at or near transit, this variation is necessary. The procedure is:

1. Determine the time of transit.
2. Select the LHA before and after transit for which the change in azimuth is 30° or more. Since 1° of LHA is equal to 4 minutes of time, the difference in transit LHA and the new LHA can be converted to time in minutes. Thus, the time preceding and following transit can be determined.
3. Plot the DR positions for times determined in 12.7.2. Select the appropriate assumed positions necessary for the computation and plotting of the LOPs. The assumed position for time of transit is also plotted.
4. Determine the intercepts and azimuth for each LOP. Plot these data from the respective assumed positions.
5. Resolve the LOPs to a common time, preferably that of the transit LOP.

NOTE: At $30^{\circ} \mathrm{N}$ latitude, the linear speed of the sun is approximately 780 knots. Thus, on westerly headings in highspeed aircraft, the DR distance involved before encountering a 30° change in azimuth is considerable.

Figure 12-7. Plotting a half motions observation.

Subpoint Method

When the observer is within approximately 4° of the subpoint of the body, the subpoint method of solution is normally used. This is because the radius of the circle of equal altitude is so small that a straight line does not approximate the arc and a straight line does not give an accurate LOP. The procedure is:

1. Plot the subpoints of the body for the time of the observations (using GHA and/or Dec).
2. Find the co-altitude of the shots and convert it to NM (90° - Alt $\times 60 \mathrm{NM}$).
3. Advance the first subpoint and retard the third along the DR track, using best-known track and GS.
4. Set the distance found from the co-altitude and strike it off from the resolved subpoints (with a compass or pair of dividers). Do this for each observation.

NOTE: The resulting intersection, or triangle, gives one ontime fix. If the LOPs form a triangle, the aircraft position is probably within the triangle.

The subpoint method is convenient because Pub. No. 249 is not used-only the Air Almanac. This method can also be used with a star near your assumed position and may be necessary if, for some reason, your Volume 1 is unavailable. The stars Dec and GHA are needed to determine if the observer is within 4° of the subpoint. The Air Almanac may be used to find the Dec and sidereal hour angle (SHA) of the star. The SHA of the star is added to the GHA of Aries to find the GHA of the star.

Eliminating Motions with the Bracket Technique

For sun observations, you can eliminate motion calculations by using a shooting schedule of 3 minutes early, on fix time, and 3-minutes late. With this schedule, the 3-minute early and 3-minute late shots have the same magnitude of motion but an opposite sign. Therefore, these motions cancel each other out and do not need to be computed. The on-time shot has no motions. Therefore, the three intercepts can be averaged for a single LOP. At night, shooting the same star 4 minutes early and late, with a different star shot on time, can employ a similar method. In this case, the intercepts for the same star's 4 -minute early or late shots can be averaged. This reduces workload, but only two LOPs are obtained.

DR Computer Modification

Rather than eliminating motions, your DR computer can be modified so both observer and body motions can be computed at one time, without entry into the Pub. No. 249. Make a GS and latitude scale. [Figure 12-8] After constructing these, the DR computer can be modified for quick and accurate computations of 1-minute motion adjustments.

Figure 12-8. MB-4 motions modification.

Tape the GS scale (0 through 900) along the centerline of the grid scale. Match zero to zero, 300 to 50, and 600 to 100 as shown in Figure 12-8. Then, tape the latitude scale along the zero grid line so that 90° falls on the centerline and the scale extends to the left as shown. Check the accuracy of your placement: 30° latitude should fall 13 divisions left of centerline. Juggle the scale as necessary to provide the greatest accuracy between 30° and 45°.

To use the modified MB-4 computer for motion adjustments:

- Set true north under the index. If computing for grid, set polar angle (PA) under the index. In the NW and SE hemisphere quadrants, PA equals convergence angle (CA). In the NE and SW quadrants, $\mathrm{PA}=360-\mathrm{CA}$. Next, place the grommet over the zero grid line. Mark a cross (+) at the assumed latitude. [Figure 12-9]
- Set track (or grid track) under the index and position the slide so the GS is under the grommet. Place a dot on the zero point of the grid scale. [Figure 12-10]
- Place the Zn (or grid Zn) of the body under the index. Position the slide so the cross or the dot, whichever is uppermost, is on the zero line of the grid. [Figure 12-11]

NOTE: The vertical distance between the zero line and the low mark is the combined 1-minute motion. Each line of the grid equals 1 minute of arc (1 mile). If the cross is on the zero line, the motion is positive. If the dot is on the zero line, the motion is negative. When solving for motions using grid, all directions must be grid directions.

Figure 12-9. Celestial motions-step one.

Figure 12-10. Celestial motions-step two.
EXAMPLE: Given the following information, find the combined 1-minute motion adjustment.

Assumed Latitude
True Track
GS
True Zn
Answer

Combinations of Sun, Moon, and Venus

The moon or Venus is often visible during daylight hours and can be used to obtain an LOP. Always consider fixing using these bodies during daylight celestial flights. When planning the flight, use the sky diagrams in the Air Almanac to determine the availability of the moon and Venus. If the
bodies are available, they can be readily found by accurately to determine the availability of the moon and Venus. If the
bodies are available, they can be readily found by accurately precomputing their altitudes and azimuths.

When looking for Venus, take all the filters out of the sextant and point it at the precise location of the planet. A bright, small pinpoint of light is visible but hard to detect, unless sky conditions and separation from the sun are ideal. With sky conditions and separation from the sun are ideal. With
practice, acquisition should become easier and you will be familiar with those conditions conducive to successfully making a Venus shot.
$45^{\circ} 10^{\prime} \mathrm{N}$
270°
240 knots
171°

Set Zn 171 under true index. Move slide so that dot \odot is on the zero grid line. Read combined motion adjust of minus 1.1.

Figure 12-11. Celestial motions-step three.
During the day when the sun is high, the moon or Venus, if they are available, can be used to obtain compass deviation checks. In polar regions during periods of continuous twilight, the moon and Venus are available if their Dec is the same name as the latitude.

Duration of Light

Sunrise and sunset at sea level and at altitude, moonrise and moonset and semiduration graphs will not be discussed in detail in this chapter. It is imperative; however, to preplan for any flight where twilight occurs during the course of the flight, especially at the higher latitudes where twilight extends over longer periods of time. An excellent discussion, with appropriate examples, is provided in the Air Almanac and should be sufficient for those missions requiring detailed planning.

True Heading Celestial Observation

The periscopic sextant, in addition to measuring celestial altitudes, can be used to determine true headings (TH) and true bearings (TB). Any celestial body, whose azimuth can be computed, can be used to obtain a TH. Except for Polaris, the appropriate volume of Pub. No. 249 is entered to obtain Zn (true bearing). In the case of Polaris, the Air Almanac has

1. Precompute the Zn of the body.
2. Using the azimuth crank, set the Zn of the body in the azimuth counter window.
3. Using the altitude control knob, set Hc in the altitude counter window.
4. Locate the body by turning the sextant until the approximate TH of the aircraft falls under the vertical crosshair. Body should be in the field of vision. Bring body into collimation.
5. Read the exact TH under the vertical crosshair (060 ${ }^{\circ}$).
an azimuth of Polaris table. It does not require information from the Pub. No. 249 tables. There are two methods used to obtain TH with the periscopic sextant. The TB method requires precomputation of Zn . Postcomputation of Zn is possible with the inverse relative bearing (IRB) method. The procedures follow.

True Bearing (TB) Method:

1. Determine GMT and body to be observed.
2. Extract GHA from the Air Almanac.
3. Apply exact longitude, at the time of the shot, to GHA to obtain exact LHA.
4. Enter appropriate Pub. No. 249. table with exact LHA, latitude, and Dec. Interpolate if necessary and extract Zn and Hc. [Figure 12-12] If Polaris is used, obtain the azimuth from the Azimuth of Polaris table in the

Air Almanac and use your latitude instead of Hc. [Figure 12-13]
5. Set Zn in the azimuth counter window with the azimuth crank, and set Hc in the altitude counter window with the altitude control knob.
6. Collimate the body at the precomputed time and read the TH of the aircraft under the vertical crosshair in the field of vision. If you are using precomputation techniques, a TH is available every time an altitude observation is made.

NOTE: Shot must be taken at precomp time.

Inverse Relative Bearing (IRB) Method:

1. Set 000° in the azimuth counter window with the azimuth crank. [Figure 12-14]
2. Precompute the Zn of the body.
3. Using the azimuth crank, set the Zn of polaris into the azimuth counter window.
4. Using the altitude control knob, set your latitude into the altitude counter window.
5. Locate polaris by turning the sextant until the approximate TH of the aircraft falls under the vertical crosshair. Polaris should be in the field of vision. Bring polaris into collimation.
6. Read the exact TH under the vertical crosshair (050 ${ }^{\circ}$).

Figure 12-13. True bearing method (including Polaris).
2. Collimate the body. At the desired time, read the IRB under the vertical crosshair in the field of vision.
3. Compute Zn of the celestial body and use the formula: $\mathrm{TH}=\mathrm{Zn}+\mathrm{IRB}$

Celestial Navigation in High Latitudes

Celestial navigation in polar regions is of primary importance because it constitutes a primary method of determining position other than by DR, and it provides a reliable means of establishing direction over much of the polar regions. The magnetic compass and directional gyro (DG) are useful in polar regions, but they require an independent check that can be provided by a celestial body or other automatic system, such as inertial navigation system (INS) or global positioning system (GPS).

At high latitudes, the sun's daily motion is nearly parallel to the horizon. The motion of the aircraft in these regions can easily have greater effect upon altitude and Zn of the sun than the motion of the sun itself.

At latitude 64°, an aircraft flying west at 400 knots keeps pace with the sun, which appears to remain stationary in the sky. At higher latitudes, the altitude of a celestial body might be increasing at any time of day, if the aircraft is flying toward it and a body might rise or set, at any azimuth, depending upon the direction of motion of the aircraft relative to the body.

Bodies Available for Observation

During the continuous daylight of the polar summer, only the sun is regularly available for observation. The moon is

1. Turn crank until 000° is in the azimuth counter window
2. Locate the body and bring into collimation.
3. Read IRB under the vertical crosshair.
4. Solve the formula:

$$
\mathrm{TH}=\mathrm{Zn}+\mathrm{IRB}
$$

Figure 12-14. Inverse relative bearing method.
above the horizon about half the time, but generally it is both visible and at a favorable position with respect to the sun for only a few days each month.

During the long polar twilight, no celestial bodies may be available for observation. As in lower latitudes, the first celestial bodies to appear after sunset and the last to remain visible before sunrise are those brighter planets, which are above the horizon.

The sun, moon, and planets are never high in polar skies, thus making low altitude observations routine. Particularly with the sun, observations are made when any part of the celestial body is visible. If it is partly below the horizon, the upper limb is observed and a correction of -16^{\prime} for semidiameter (SD) is used in the SD block of the precomputation form.

During the polar night, stars are available. Polaris is not generally used, because it is too near the zenith in the arctic and not visible in the Antarctic. A number of good stars are in favorable positions for observation. Because of large refractions near the horizon avoid low altitudes (below about 20°) when higher bodies are visible.

Sight Reduction

Sight reduction in polar regions presents some slightly different problems from those at lower latitudes. Remember, for latitudes greater than $69^{\circ} \mathrm{N}$ or $69^{\circ} \mathrm{S}$, Pub. No. 249 tables have tabulated Hc and azimuths for only even degrees of LHA. This concerns you in two ways. First, it is necessary to adjust assumed longitude to achieve a whole, even LHA for extractions. This precludes interpolating. Second, the difference between successive, tabulated Hc is for 2° of LHA,
or 8 minutes of time, so this difference must be divided in half when computing motion of the body for 4 minutes of time.

For ease of plotting, all azimuths can be converted to grid. To convert, use the longitude of the assumed position to determine convergence, because the Zn is for the assumed position, not the DR position. On polar charts, convergence is equal to longitude.

In computing motion of the observer, it is imperative that you use the difference between grid azimuth and grid track, or Zn and true track, since this computation is based on relative bearing (RB). Zn minus grid course does not give RB.

Since low altitudes and low temperatures are normal in polar regions, refer to the refraction correction table and use the temperature correction factor for all observations.

In polar regions, Coriolis corrections reach maximum values and should be carefully computed.

Poles as Assumed Positions

Within approximately 2° of the pole, it is possible to use the pole as the assumed position. With this method, no tabulated celestial computation is necessary and the position may be determined by use of the Air Almanac alone.

At either of the poles of the earth, the zenith and the elevated poles are coincident or the plane of the horizon is coincident with the plane of the equator. Vertical circles coincide with the meridians and parallels of latitude coincide with Dec circles. Therefore, the altitude of the body is equal to its Dec and the azimuth is equal to its hour angle.

To plot any LOP, an intercept and the azimuth of the body are needed. In this solution, the elevated pole is the assumed position. The azimuth is plotted as the GHA of the body or the longitude of the subpoint. The intercept is found by comparing the Dec of the body, as taken from the Air Almanac, with the observed altitude of the body. To summarize, the pole is the assumed position, the Dec is the Hc , and the GHA equals the azimuth.

For ease of plotting, convert the GHA of the body to grid azimuth by adding or subtracting 180° when using the North Pole as the assumed position. When at the South Pole, $360^{\circ}-$ GHA of the body equals grid azimuth. The result allows the use of the grid lines for plotting the LOPs. When using grid azimuth for plotting, apply Coriolis to the assumed position (in this case, the pole). Precession or nutation corrections are not necessary since current SHA and Dec are used. Motion of the observer tables may also be used in precomputation, since grid azimuth relative to grid course may be determined. Motion of the body is zero at the poles.

Note the exact GMT of the celestial observation. From the Air Almanac, extract the proper Dec and GHA. Plot the azimuth. Compare Ho and Hc to obtain the intercept. When the observed altitude (Ho) is greater than the $\mathrm{Dec}(\mathrm{Hc})$, it is necessary to go from the pole toward the celestial body along the azimuth. If the observed altitude is less than the Dec, as is the case with the sun in Figure 12-15, it is necessary to go from the pole away from the body along the azimuth. Draw the LOPs perpendicular to the azimuth line in the usual manner. Do not be concerned about large intercepts; they have no bearing on the accuracy of this type of fix. Observations on well-separated bearings give a fix that is as good close to the pole as it is anywhere else.

Figure 12-15. Using pole as assumed position.

Adjusting Assumed Position

Adjusting Assumed Position for Off-Time Shot

There are times when the observer does not start the shot at the prescribed time for various reasons. For example, the observer may struggle to find the body due to cloud cover. If a shot is taken off time, you can use the FEAST (Fast EAST) rule: a shot taken too fast or too early has the assumed position moved 15 ' of longitude east for each minute early to compensate for body motion. [Figure 12-16] Apply the
reverse of the FEAST rule for late shots (move the assumed position west). This adjusted position is then advanced or retarded for track and GS to account for motion of the observer, applying the same concept used in the three-LHA method. [Figure 12-5] This technique for solving motions is also discussed in Chapter 10.

Figure 12-16. Corrections for off-time shooting.
EXAMPLE:
Original assumed position: $\quad 23^{\circ}-50^{\prime} \mathrm{N} 120^{\circ}-00^{\prime} \mathrm{W}$ Move 15' of longitude west for 1 minute late
Retard 6 NM from track of $360^{\circ} \mathrm{TH}$
New assumed position
$23^{\circ}-44^{\prime} \mathrm{N} 120^{\circ}-15^{\prime} \mathrm{W}$

Longitude Adjustment Principle

You will occasionally make errors in your precomputations. Possibly the most common would be an extraction error of the GHA or math error while computing the LHA. If one of these numbers is incorrect, then all the extractions from the Pub. No. 249 would be based on erroneous information, and the result would be an LOP error. Fortunately there is a way of compensating for this type of error without having to reenter the table and retrieve the correct data. This method is called the Longitude Adjustment Principle (LAP). You need only adjust the assumed longitude (up to $2^{1} 2^{\circ}$) to correct for a GHA extraction error or a math error. Moving the assumed position beyond the $2 \frac{1}{2} 2^{\circ}$ induces some error in the plotting LOP. Suppose you wanted the GHA for

1410Z, you extracted the value for 1400 Z and applied it to the longitude. [Figure 12-17] The resultant LHA was used and the precomp completed before you realized your error. To do the LAP first, extract the correct GHA (031-20), keep the old LHA, and adjust the longitude so that the math is correct. [Figure 12-18] A math error can occur in solving for the LHA. [Figure 12-19] Once you have corrected the precomp, use the adjusted longitude for your assumed longitude to plot the LOP.

Body	Sun	Incorrect value for the GHA.
Base GHA	028-50	
CORR		1. Is this error within $\mathbf{2}^{1 / 2}{ }^{\circ}$?
(+360)	360	
GHA	388-50	$\begin{array}{r} 031-20 \\ 028-50 \\ \hline \end{array}$
$\begin{aligned} & \text { ASSUM-W } \\ & \text { LONG }+E \end{aligned}$	130-50	2. $2^{\circ} 30^{\prime}$ of longitude is less than 150 NM .
LHA	258	
$\begin{aligned} & \text { ASSUM } \\ & \text { LAT } \end{aligned}$	42	

Figure 12-17. LAP using incorrect GHA.

Body	Sun		1410 GHA
Base GHA	028-50	031-20	
CORR			
(+360)	360	360	
GHA	388-50	391-20	Longitude is adjusted
$\begin{aligned} & \text { ASSUM-W } \\ & \text { LONG }+\mathrm{E} \end{aligned}$	130-50	133-20	
LHA	258	258	LHA remains the same
$\begin{aligned} & \text { ASSUM } \\ & \text { LAT } \end{aligned}$	$42 \stackrel{N}{\mathrm{~N}}$		

Figure 12-18. LAP using correct GHA.

Chapter Summary

Any of the techniques discussed here, if used on a regular basis, can be just as accurate as normal precomping procedures and save some time as well. These techniques are not all inclusive. There are many commercial publications available as a source for celestial navigators: for example, American Practical Navigator by Bowditch (available through the NGA) and the Journal of the Institute of Navigation (available through the Institute of Navigation).

| Body

 Base GHA
 CORR | $320-30$ | | |
| :---: | :---: | :---: | :---: | :---: |
| | (+360) | | |

Figure 12-19. LAP correcting a math error.

Chapter I3

Sextants and Errors of Observation

Sextants

For hundreds of years, mariners have navigated the seas keeping track of their positions by use of the sextant. This instrument measured the altitude of celestial bodies (their angular distance above the horizon), and the information derived from this measurement was used to determine the position of the vessel. All celestial navigation follows this rule. Today's navigator measures the altitude of the celestial bodies in much the same manner as Magellan or Columbus. However, there is a difference between air and marine celestial navigation. Because marine navigators are on the surface of the ocean, they can establish their horizon by referring to the natural horizon. In an aircraft, this is impossible because altitude and aircraft attitude induce error. In the sextant designed for air navigation, a bubble, like the one in a carpenter's level, determines an artificial horizon, which is parallel to the celestial horizon. The bubble chamber is placed in the sextant so the bubble is superimposed upon the field of view. Both the celestial body and the bubble are viewed simultaneously, making it possible to keep the sextant level while sighting the body.

Sextants are subject to certain errors that must be compensated for when determining a line of position (LOP). Some of these errors are instrument errors while others are induced by the various inflight conditions. The first half of this chapter discusses the sextant and the second half explains sextant errors.

The Bubble Sextant

The aircraft bubble sextant measures altitude above a horizontal plane established by a bubble. Aviators use several types of bubble sextants, all of which are indirect sighting. This means the navigator does not look directly toward the celestial body, but always looks in a horizontal direction as shown in Figure 13-1. The image of the body is reflected into the field of view when the field prism is set at the correct angle. In the bubble sextant, the bubble and body are visible in the same field of view. The sextant system consists of four parts: the mount, the sextant, the electrical cables, and the carrying case.

The Periscopic Sextant

The periscopic sextant is an optical instrument that enables the navigator to determine true azimuth (Zn), relative bearing (RB), altitude angle of a celestial body, and aircraft true heading (TH). The sextant provides an angle of observation from below the horizon to directly overhead, as compared to an artificial horizon. [Figure 13-2]

Proper collimation techniques and the correct size bubble are essential ingredients of accurate celestial observations. Collimation is effected when the body is placed in the center of the bubble. For greatest accuracy, the bubble should be in the center of the field, with the body in the center of the bubble. The error is small if the bubble is anywhere on the vertical line of the field, as long as it does not touch the top or bottom of the bubble chamber. Figure 13-3 shows examples of collimation from better to worse.

Bubble size affects the accuracy of a sextant observation. The ideal situation for collimation is to have a small bubble for ease in determining the center. A bubble that is too small sticks to the lens, decreasing accuracy. A bubble that is too large moves like a creature from a science fiction movie, making it difficult to find the center. Experience shows that best results are obtained with a bubble approximately one and a half times the apparent diameter of the sun or moon,

Figure 13-1. Body is not sighted directly.

Figure 13-2. Periscopic sextant mount.

Figure 13-3. Correct and incorrect collimation.
or about the size of a small washer ring. The field prism is geared to an altitude scale so that when the body is collimated, the altitude can be read from the scale.

An averaging mechanism is also incorporated that allows the navigator to take an observation over a period of time. The continuous motion of the aircraft affects the bubble and resultant artificial horizon. This movement resolves itself into a cycle in which the aircraft rolls, yaws, and pitches. To obtain an accurate reading, it is necessary to sight the body for a period of time during this cyclic movement and to average the results of a series of sightings. An averaging device has been incorporated in the sextant allowing an average reading to be obtained.

The sextant is actually a low-power periscope with a 15° field of view. [Figure 13-4] All lens surfaces in the sextant are coated to minimize light loss. To prevent condensation when the tip of the sextant is extended into cold air, the tube is filled with a dry gas and sealed. A desiccant, composed of silica gel, is used to remove moisture and check on the dryness of the gas inside the tube and is visible in the periscopic end of the sextant, or in some models, on the sextant body. When the silica gel is pink, there is moisture in the tube and the sextant should be replaced before flight.

Note: The numbers in parentheses refer to the parts indicated in Figure 13-4.

An eyepiece (1) rotates to correct the eyesight of the individual observer. Filters (2) are provided for selective use in the optical system so that the intensity of the sun's light might be adequately reduced. The filter control (2) is located on the left of the sextant.

Most sextants currently in use have been modified with an electronic device for accomplishing all the functions of the averaging mechanism. General differences in these and the unmodified sextants are addressed in this discussion.

Figure 13-4. Periscopic sextant.

A start switch (4) (a start and stop or averager operating lever (4A) on unmodified sextants) starts and stops the operation of the sextant. Adjacent to this switch is the reset switch (5) (the averager rewind lever, if unmodified (5A), located below the averager operating lever). The reset switch, or averager rewind lever, has four functions. When depressed and released, it does the following:

1. Removes the shutter from the field of vision,
2. Zeroes and resets (rewinds if unmodified) the timer,
3. Zeroes the averager and places initial values in registers and data memory (realigns indices on unmodified sextants), and
4. Disconnects the altitude control knob from the averager.

The bubble control knob (6) should be left in the maximum increase position after adjustments have been made. With the control in the maximum increase position, an aneroid is locked to the bubble chamber to compensate for changes in ambient pressure and temperature.

On the front of the sextant, there is a rheostat control (7) that varies the intensity of the light in the bubble chamber. The altitude knob (8) is located on the right side of the sextant. It keeps the observed body in vertical collimation during
the period of the observation. At the end of the scheduled observation, it adjusts the altitude counter until the exact average indication appears, or to align the indices on unmodified sextants. The body's altitude is read in the altitude counter (9). Directly behind the altitude knob is the averager display (10) (half-time dial and indices if unmodified). The averager display, or half-time dial, is graduated from 0-60 and indicates the half time of the observation. The indices, when aligned, permit the direct reading of the observed altitude on the altitude dial.

In the periscope sextant, the averaging is accomplished by microprocessor (Deimel-Black ball integrator if unmodified), which effects a continuous moving averager over any observation period up to 2 minutes. This system is very simple to operate and has many advantages over other known averaging devices. A single switch, or lever, sets or winds the mechanism and no other presetting of the sextant, timing mechanism, or averaging is necessary. It is continuously integrating altitude against elapsed time. After at least 30 seconds, it may be stopped at any time up to 2 minutes. The average altitude is read directly from the counter. A half-time clock indicates the half time of the observation. The time indication may be added directly to the time of starting the observation to compute the mean time of the observation. At the end of the observation, the averager energizes a solenoid
(actuates a lever if unmodified) that drops a shutter across the field of view, indicating the end of the observation. Although it is possible to utilize an instantaneous shot, the normal timed observation lasts for 2 minutes. It is impossible to time any observation for less than 30 seconds using the sextant timer.

A heading scale shutter (diffuser lever) control (11) provides a convenient means of blocking out the bright illumination on the azimuth scale for night celestial observations. The objective lens (12) is located just above the heading scale shutter control. The lens aligns the azimuth scale of the sextant with the longitudinal axis of the aircraft. The lens can be rotated with the fingers in order to calibrate the azimuth scale on a known bearing while looking through the eyepiece. The objectives lens can remove up to 2° azimuth error in the azimuth ring. A locking ring beneath the lens prevents accidental movement. A dial lamp located on the right side of the sextant provides three beams of light to illuminate the averager indicators, the altitude counter, and the watch clip. The watch clip is made to hold an old-fashioned pocket watch.

Electrical Cables

Cables provide power for sextant operation and illumination. One Y cable provides power from the mount to the sextant for illumination and averager operation.

Sextant Case

The case provides shock-absorbent storage for the sextant when it is not in use. The sextant fits into form-fitting foam blocks and is secured by straps. The case also contains spare bulbs for sextant illumination and provides storage for the electrical cable.

Errors of Sextant Observation

If collimation of the body with the bubble and reading the sextant were all that had to be done, celestial navigation would be simple. This would mean LOPs that are accurate to within 1 or 2 miles could be obtained without any further effort. Unfortunately, considerable errors are encountered in every sextant observation made from an aircraft. A thorough understanding of the cause and magnitude of these errors, as well as the proper application of corrections to either computed altitude (Hc) or Hs , helps minimize their effects. Remember that any correction applied to the Hs may be applied to the Hc with a reverse sign. Accuracy of celestial navigation depends upon thorough application of these corrections, together with proper shooting techniques. The errors of sextant observation may be classified into four groups: parallax, refraction, acceleration, and instrument.

Parallax Error

Parallax in altitude is the difference between the altitude of a body above a bubble horizon at the surface of the earth and
its calculated altitude above the celestial horizon at the center of the earth. All Hc are given for the center of the earth. If the light rays reaching the earth from a celestial body are parallel, the body has the same altitude at both the center and the surface of the earth. For most celestial bodies, parallax is negligible for purposes of navigation.

Parallax Correction for the Moon

The moon is so close to the earth that its light rays are not parallel. The parallax of the moon may be as great as 1° thus, when observing the moon, a parallax correction must be applied to the Hs. This correction is always positive (+) and varies with the altitude and with the distance of the moon from the earth. The correction varies from day to day because the distance of the moon from the earth varies. Corrections for the moon's parallax in altitude are given on the daily pages of the Air Almanac and are always added, algebraically, to sextant altitudes. The values of parallax for negative altitudes are obtained from the Air Almanac for the equivalent positive altitudes.

Semidiameter Correction

Semidiameter correction is found on the daily pages of the Air Almanac. Apply it when shooting the upper or lower limb of the moon or the sun. It is more likely to occur on observations of the moon because, when the moon is not full (completely round), the center is difficult to estimate. Shoot either the upper or lower limb and apply the semidiameter correction listed on the Air Almanac page for the time and date of the observation. Subtract the correction from the Hs when shooting the upper limb; add the correction to the Hs when shooting the lower limb. Reverse the sign if applying the correction to the Hc. Listed on the same page is the semidiameter correction for the sun, which is applied the same way as for the moon.

Example: Using Figure 13-5, extract the corrections for the upper limb of the moon as observed on 11 August 1995 at 1100 Z is $33^{\circ} 41^{\prime}$.

Apply these corrections as:

Hs	$33^{\circ} 41^{\prime}$
Parallax	$+49^{\prime}$
Semidiameter	-16^{\prime}
Ho	$34^{\circ} 14^{\prime}$

Atmospheric Refraction Error

Still another factor to be taken into consideration is atmospheric refraction. If a fishing pole is partly submerged under water, it appears to bend at the surface. The bending of light rays as they pass from the water into the air causes this appearance. This bending of the light rays, as they pass from one medium into another, is called refraction. The

Figure 13-5. Correction for moon's parallax.
refraction of light from a celestial body as it passes through the atmosphere causes an error in sextant observation.

As the light of a celestial body passes from the almost perfect vacuum of outer space into the atmosphere, it is refracted as shown in Figure 13-6, so that the body appears a little higher above the horizon than it really is. Therefore, the correction to the Hs for refraction is always negative. The higher the body above the horizon, the smaller the amount of refraction and, consequently, the smaller the refraction correction. Moreover, the greater the altitude of the aircraft, the less dense the layer of atmosphere between the body and the observer; hence, the less the refraction.

Figure 13-6. Error caused by atmospheric refraction.
The appropriate correction table for atmospheric refraction is listed inside the back cover of all four books used for celestial computations; namely, the Air Almanac and each of the three volumes of Publication No. 249. It contains the Sight Reduction Tables for Air Navigation published in three volumes. Volume I, used by both the marine and air navigator, contains the altitude and azimuth values of seven selected stars for the complete ranges of latitude and hour angle of Aries. These seven stars represent the best selection for observation at any given position and time, and provide the data for presetting instruments before observation and for sight reduction afterwards. Volumes II and III cover latitudes $0-40$ and $39-89$, respectively, and are primarily used by the air navigator in conjunction with observations of celestial bodies to calculate the geographic position of the observer. This table, shown in Figure 13-7, lists the refraction for different observed altitudes of the body and for different heights of the observer above sea level. The values shown are subtracted from Hs or added to Hc.

Acceleration Error

Presently, the only practical and continuously available reference datum for the definition of the true vertical is the direction of the gravitational field of the earth. Definition of this vertical establishes the artificial horizon. It is also fundamental that the forces caused by gravity cannot be separated by those caused by accelerations within the sextant. A level or centered bubble in the sextant indicates the true vertical only when the instrument is at rest or moving at a constant velocity in a straight line. Any outside force (changes in GS or changes in track) affect the liquid in the bubble chamber and, consequently, displace the bubble.

When the sextant is moved in a curved path (Coriolis, changes in heading, rhumb line, etc.), or with varying speed, the zenith indicated by the bubble is displaced from the true vertical. This presents a false artificial horizon above which the altitude of the celestial body is measured. Since the horizon used is false, the altitude measured from it is erroneous. Therefore, the accuracy of celestial observations is directly related to changes in track and speed of the aircraft. Acceleration errors have two principal causes: changes in GS and curvature of the aircraft's path in space.

The displacement of the liquid and the bubble in the chamber may be divided into two vectors, and each vector may be considered separately. These vectors may be thought of as a lateral vector (along the wings) and a longitudinal vector (along the nose-tail axis of the aircraft). Any change in GS can cause a longitudinal displacement. This change can be brought about by a change in the airspeed or the wind encountered, or the change in GS brought about by a change in heading due to other factors (gyro precession and rhumb line error). A lateral displacement results from a number of causes, most of which occur in spite of any efforts to hold them in check. These causes are Coriolis, rhumb line, and wander errors.

Coriolis Force

Any free-moving body traveling at a constant speed above the earth is subject to an apparent force that deflects its path to the right in the Northern Hemisphere and to the left in the Southern Hemisphere. This apparent force, and the resulting acceleration, were first discovered shortly before the middle of the 19th century by Gaspard Gustave de Coriolis (1792-1843) and given quantitative formulation by William Ferrel (18171891). The acceleration is known as Coriolis acceleration, or force, or simply, Coriolis, and is expressed in Ferrel's law.

You must realize that the bubble sextant indicates the true vertical only when the instrument is at rest or moving at a constant speed in a straight line as perceived in space. If the earth were motionless, this straight path in space would also

Choose the column appropriate to height, in units of 1,000 feet, and find the range of altitude in which the sextant altitude lies; the corresponding valve of R_{o} is the refraction, to be subtracted from sextant altitude, unless conditions are extreme. In that case find f from the lower table, with critical argument temperature. Use the table on the right to form the refraction, $R=R_{\circ} \times f$

Figure 13-7. Corrections for atmospheric refraction.
be a straight path over the surface of the earth; conversely, a straight path over the motionless earth would also be a straight path in space.

When the aircraft is flying a path curved in space to the left, the fluid in the bubble chamber is deflected to the right, and the bubble is deflected to the left of the aircraft's path over the earth. When the aircraft is flying a curved path in space to the right, the reverse is true.

In Figure 13-8, the aircraft is represented as flying on a curved path to the left. Note that in the inset representing the bubble chamber, the heavy black bubble is indicated in its approximate position representing the true vertical.

The observer always seeks to center the bubble and, on this beam shot facing to the right side of the aircraft to observe the body, tip the sextant up. This would tilt the bubble horizon from its true position, producing a smaller sextant reading

Figure 13-8. Error caused by Coriolis force.
than the true value. The smaller the height observed (Ho), the greater the radius of the circle of equal altitude-the LOP falls farther from the subpoint than the true LOP. Obviously,
if the erroneous LOP falls farther from the subpoint, it falls to the left of the true LOP and the correction to the right is valid. Corrections for Coriolis error are shown on the inside back cover of the Air Almanac, as well as in all volumes of Pub. No. 249 published by the National Imagery and Mapping Agency.

Coriolis acceleration is directly proportional to the straightline velocity, directly proportional to the angular velocity of the earth, directly proportional to the sine of the latitude, and at right angles to the direction of flight.

Rhumb Line Error

The straight Coriolis table in Figure 13-9, found in the Air Almanac or Pub. No. 249, has a limited application. As long as a constant TH is flown, the path of the aircraft is a rhumb line. Because a rhumb line on the earth's surface is a curve, it is also a curved line in space. If the aircraft is headed in an easterly direction in the Northern Hemisphere, the apparent curve is to the left and becomes an addition to the Coriolis error. By the same token, if headed in a westerly direction in the Northern Hemisphere, the apparent curve is to the right, or opposite that of Coriolis force. [Figure 13-10] There are notable exceptions to this. When flying north or south, the aircraft is flying a great circle and there is no rhumb line error. Also, when steering by a free-running, compensated gyro, the track approximates a great circle and eliminates rhumb line error.

At speeds under 300 knots, the error is negligible. However, at high speeds or high latitudes, rhumb line error is appreciable. For example, at $60^{\circ} \mathrm{N}$ latitude with a track of 100° and a GS of 650 knots, the Coriolis correction is 15 nautical miles (NM) right, and the rhumb line correction is 10 NM right. Use the following steps and Figure 13-11 to determine the correction for rhumb line error and Coriolis correction.

Figure 13-10. Coriolis and/or rhumb line errors in the northern hemisphere.

1. Enter the nearest latitude on the left side. Interpolate if necessary.
2. Enter the nearest track across the top of the chart. Interpolate if necessary.
3. Choose the closest GS and extract the correction; 50N, track 080°, GS 500 knots $=14.3$ Right.

Groundspeed Acceleration Error

Changes in airspeed or wind velocity cause this error. Prevent changes of airspeed through good crew coordination.

Coriolis (Z) Correction
To be applied by moving the position line a distance Z to starboard (right) of the track in northern latitudes and to port (left) in southern latitudes.

	Latitude						Latitude				
G/S Knots	$0^{\circ} 10^{\circ}$	$20^{\circ} 30^{\circ}$	$40^{\circ} 50^{\circ}$	$60^{\circ} 70^{\circ}$	$80^{\circ} 90^{\circ}$	G/S Knots	$0^{\circ} 10^{\circ}$	$20^{\circ} 30^{\circ}$	$40^{\circ} 50^{\circ}$	$60^{\circ} 70^{\circ}$	$80^{\circ} 90^{\circ}$
	,	,	,		,						
150	01	12	33	34	44	550	03	57	911	1214	1414
200	01	23	34	55	55	600	03	58	1012	1415	1616
250	$0 \quad 1$		45	66	67	650	03	69	1113	1516	1717
300	01		56	77	88	700	03	69	1214	1617	1818
350	02	35	67	89	$9 \quad 9$	750	03	710	1315	1718	1920
400	02		78	910	1010	800	04	710	1316	1820	2121
450	02		89	1011	1212	850		811	1417	1921	2222
500			810	1112	1313	900			1518	2022	$23 \quad 24$

Figure 13-9. Coriolis correction.

Groundspeed 300 knots

$\xrightarrow[\substack{\text { LAT }}]{\underset{\downarrow}{\text { TR }}}$	270	260	250 290	240 300	230 310	220 320	210 330	200	190 350	180 0	170 10	160 20	150 30	140 40	130 50	120 60	110 70	100 80	90 90
0	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.3	1.3	1.4	1.4	1.4	1.5	1.5	1.6	1.6	1.6	1.6	1.6
20	2.2	2.2	2.2	2.3	2.3	2.4	2.4	2.5	2.6	2.7	2.8	2.8	2.9	3.0	3.1	3.1	3.1	3.2	3.2
30	3.2	3.2	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.1	4.2	4.3	4.4	4.5	4.6	4.6	4.7	4.7
40	4.0	4.0	4.0	4.1	4.2	4.4	4.5	4.7	4.9	5.1	5.2	5.4	5.6	5.8	5.9	6.0	6.1	6.1	6.2
50	4.5	4.5	4.5	4.7	4.8	5.0	5.2	5.5	5.7	6.0	6.3	6.6	6.8	7.0	7.2	7.4	7.5	7.6	7.6
60	4.6	4.6	4.7	4.9	5.1	5.4	5.7	6.0	6.4	6.8	7.2	7.6	7.9	8.2	8.5	8.8	8.9	9.0	9.0
70	3.8	3.8	4.0	4.3	4.6	5.1	5.6	6.1	6.8	7.4	8.0	8.6	9.2	9.7	10.2	10.5	10.8	10.9	11.0
80	0.3	0.4	0.8	1.3	2.0	3.0	4.0	5.2	6.4	7.7	9.0	10.3	11.5	12.5	13.5	14.2	14.7	15.0	15.1
89	67.2	66.1	62.6	57.4	50.1	40.2	30.0	17.9	5.3	7.9	21.0	33.6	45.7	55.9	65.8	73.1	78.3	81.8	82.9

Groundspeed 650 knots
Interpolate

$\xrightarrow[\substack{\text { LAT }}]{\underset{\downarrow}{\text { TR }}}$	270	260	250	240 300	230 310	220 320	210 330	200 340	190 350	$\begin{array}{r} 180 \\ 0 \end{array}$	$\begin{array}{r} 170 \\ 10 \end{array}$	$\begin{array}{r} 160 \\ 20 \end{array}$	$\begin{array}{r} 150 \\ 30 \end{array}$	$\begin{array}{r} 140 \\ 40 \end{array}$	$\begin{array}{r} 130 \\ 50 \end{array}$	$\begin{array}{r} 120 \\ 60 \end{array}$	$\begin{array}{r} 110 \\ 70 \end{array}$	100 80	90 90
0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	1.9	1.9	1.9	2.0	2.1	2.3	2.4	2.6	2.8	3.0	3.1	3.3	3.5	3.7	3.8	3.9	4.0	4.0	4.0
20	3.6	3.6	3.7	3.9	4.1	4.4	4.7	5.1	5.4	5.8	6.2	6.6	7.0	7.3	4.6	7.7	7.9	8.0	8.1
30	5.0	5.0	5.2	5.4	5.8	6.3	6.7	7.3	7.9	8.5	9.1	9.7	10.3	10.8	11.2	11.6	11.8	12.0	12.1
40	5.8	5.9	6.1	6.5	7.0	7.7	8.4	9.2	10.1	11.0	11.8	12.7	13.5	14.2	14.9	15.5	15.8	16.0	16.1
50	5.7	5.8	6.1	6.6	7.4	8.3	9.3	10.5	11.8	13.0	14.3	15.6	16.7	17.7	18.6	19.4	19.9	20.2	420.3
60	4.2	4.3	4.8	5.6	6.6	8.0	9.4	11.1	12.9	14.7	16.5	18.3	20.0	21.5	22.8	23.9	24.6	25.1	25.2
70	0.9	0.6	0.2	1.3	3.0	5.2	7.5	10.2	13.1	16.0	19.0	21.8	24.5	26.8	29.0	30.7	31.8	32.6	32.9
80	18.0	17.5	15.9	13.6	10.1	5.6	0.8	4.8	10.7	16.8	22.8	28.7	34.3	39.1	43.6	47.1	49.4	51.0	51.5
89	334.8	329.2	313.0	288.9	254.5	208.2	160.1	103.6	44.6	17.0	78.7	137.6	194.1	242.2	288.5	322.9	347.0	363.2	368.8

Highlighted numbers are plotted in a direction opposite to that of coriolis force.
*Coriolis corrections alone are the figures on the 0 or 180 column.
Figure 13-11. Combined Coriolis and rhumb line correction.

Changes in wind velocity with resultant changes in GS are more difficult to control. The change in GS causes the liquid to be displaced, with the subsequent shifting of the bubble creating a false horizon. Notice in Figure 13-12 how the horizon is automatically displaced by keeping the bubble in the center while these changes are taking place. A very simple rule applies to acceleration and deceleration forces. If the aircraft accelerates while a celestial observation is in progress, the resultant LOP falls ahead of the actual position. Accelerate-Ahead. The more the LOP approaches a speed line, the greater the acceleration error becomes. Refer to Figure 13-13.

1. Enter with $\mathrm{Zn}-$ Track.
2. Extract acceleration error and apply sign.

Example: Track $=080^{\circ}, \mathrm{Zn}=060^{\circ}$, Beginning GS -500 knots, ending GS -515 knots.
$060^{\circ}-080^{\circ}=340^{\circ}=-1.40$
$515-500=15$ knots
$-1.40 \times 15=-21$ correction to the Ho

Figure 13-12. Acceleration/deceleration errors.

Wander Error

A change in track can be produced by changes in the wind, heading changes caused by the autopilot, changing magnetic variation, or by heading changes caused by pilot manual steering errors. As with the Coriolis force and rhumb line errors, correction tables have been developed for wander error. Values extracted from the wander correction table, shown in Figure 13-14, are to be applied to the Ho.

ZN-TR		Groundspeed
+/-	+/-	Error/Knot
$\begin{aligned} & 000 / 180 \\ & 005 / 175 \end{aligned}$	$\begin{aligned} & 180 / 360 \\ & 185 / 355 \end{aligned}$	1.50
$\begin{aligned} & 010 / 170 \\ & 015 / 165 \end{aligned}$	$\begin{aligned} & 190 / 350 \\ & 195 / 345 \end{aligned}$	1.48
$\begin{aligned} & 020 / 160 \\ & 025 / 155 \end{aligned}$	$\begin{aligned} & 200 / 340 \\ & 205 / 335 \end{aligned}$	1.40
$\begin{aligned} & 030 / 150 \\ & 035 / 145 \end{aligned}$	$\begin{aligned} & 210 / 330 \\ & 215 / 325 \end{aligned}$	1.30
$\begin{aligned} & 040 / 140 \\ & 045 / 135 \end{aligned}$	$\begin{aligned} & 220 / 320 \\ & 225 / 315 \end{aligned}$	1.15
$\begin{aligned} & 050 / 130 \\ & 055 / 125 \end{aligned}$	$\begin{aligned} & 230 / 310 \\ & 235 / 305 \end{aligned}$	0.97
$\begin{aligned} & 060 / 120 \\ & 065 / 115 \end{aligned}$	$\begin{aligned} & 240 / 300 \\ & 245 / 295 \end{aligned}$	0.75
$\begin{aligned} & 070 / 110 \\ & 075 / 105 \end{aligned}$	$\begin{aligned} & 250 / 290 \\ & 255 / 285 \end{aligned}$	0.51
$\begin{aligned} & 080 / 100 \\ & 085 / 095 \end{aligned}$	$\begin{aligned} & 260 / 280 \\ & 265 / 275 \end{aligned}$	0.26
090/090	270/270	0.00

Figure 13-13. Groundspeed acceleration error.

Figure 13-14. Wander correction tables.

Use the following information as entering arguments for the determination of the correction taken from the table:

1. The heading at the beginning of the observation was 079°.
2. The heading at the end of the observation was 081°.
3. The observation was taken over a 2 -minute period.
4. The GS was 450 knots.
5. The Zn of the body was 130°.

Following the instructions shown at the bottom of the table, enter the numerical portion of the table with the values of GS and the change of track per 2 minutes. In this case, the GS is 450 knots and the change in track per 2 minutes is 2°. Since the heading at the end of the observation is greater than the heading at the beginning, the change is 2° to the right. Notice that you must know whether the change is to the right or to the left to determine the sign of the correction. The factor obtained from the table is $12 \times 2=24$.

Next, enter the graph portion of the table with the value of the factor (24) and the value of the azimuth of the body, minus the value of track. The graph is so constructed that it must be entered with $\mathrm{Zn}-\mathrm{Tr}$.

$$
\mathrm{Zn}-\mathrm{Tr}=130^{\circ}-080^{\circ} ; \text { so use } 050^{\circ}
$$

Following the rules in steps two and three in the table; the correction is 19'. Since the change in track is to the right, the correction is subtracted from the Ho. This is determined by referring to the signs shown at the ends of the arc in the table. Figure 13-15 shows the effect of this correction.

If the track and groundspeed are the same at the beginning and the end of a shooting period, there is no wander error.

Figure 13-15. Wander correction applied to Ho.

Instrument Error

Index error is usually the largest mechanical error in the sextant. This error is caused by improper alignment of the index prism with the altitude counter. No matter how carefully a sextant is handled, it is likely to have some index error. If the error is small, the sextant need not be readjusted; each Hs can be corrected by the amount of the error. This means that the index error of the sextant must be known to obtain an accurate celestial LOP. Another mechanical error found in sextants is backlash. This is caused by excessive play in the gear train connecting the index prism to the altitude counter.

Usually, index and backlash errors are nearly constant through the altitude range of the sextant. Therefore, if the error at one altitude setting is determined, the correction can be applied to any Hs or Hc . The correction is of equal value to the error, but the opposite sign.

The sextant should be checked on the ground before every celestial flight. Preflighting the sextant can determine the sextant error of an individual instrument. The sextant error can also be determined in-flight and a correction can be applied to the precomp to compensate for the error. To determine the error and correction in-flight, one must have a celestial LOP, a Zn , and the actual, or best-known, position of the aircraft at the same time. [Figure 13-16]

Figure 13-16. Determining sextant error correction.

The fix symbol represents the best-known position at the time of the celestial LOP. To determine the actual value of the correction, measure the shortest distance between the position and the LOP. This tells you how many minutes of arc (NM) the Ho must be adjusted on subsequent shots to get an accurate LOP. In this case, the value is 10 '. To determine whether this value must be added or subtracted, note whether the LOP needs to be adjusted toward the Zn or away from the Zn . Remember the rule HOMOTO? It applies here, too. If the LOP needs to be moved toward the Zn in order to be made more accurate, the Ho needs to be made larger, thus, the correction is added to the Ho to make the Ho value increase. If the LOP needs to be moved away from the Zn , the correction is subtracted from the Ho to make the Ho less. In Figure 13-16, the LOP needs to be moved 10 miles toward the Zn in order to be accurate; thus, the sextant error correction is +10 to the Ho and can be used on subsequent shots obtained from the same sextant.

An important thing to remember is that the sextant error correction assumes conditions are consistent. As a technique, it is wise to obtain several LOPs with a sextant, noting the sextant errors on each, before establishing a value to be carried on the precomp. Once using that correction, make sure you use the same sextant.

Chapter Summary

The first half of this chapter described the parts and operation of the sextant and the second half explained sextant errors. Remember to apply parallax, semidiameter, and refraction errors on every applicable shot. Corrections for acceleration errors can be applied only if you know the track and groundspeed before and after each shot, so be aware of your speed and direction when shooting. Time permitting, always try to evaluate the accuracy of your sextant on the ground.

