Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Но	GHA	Dec
Sight 1					
Sight advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$a = \frac{1}{1}$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^L \frac{1}{\cos(L + x \cos C)} dx$		degrees
$= \frac{180}{\pi} \tan C \left[ln \left(\frac{\tan \left(45^{\circ} + \frac{L + D \cos C}{2} \right)}{\tan \left(45^{\circ} + \frac{L}{2} \right)} \right) \right]$		D = nautical miles traveled L = Original declination
Special case for traveling due east or west (C is 90° or 270°):		
$\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		

$$\begin{split} \cos(D_{12}) &= \sin(Dec_1) \sin(Dec_2) + \cos(Dec_1) \cos(Dec_2) \cos(GHA_1 - GHA_2) \\ \cos(A) &= \left[\sin(Dec_2) - \sin(Dec_1) \cos(D_{12}) \right] / \left[\cos(Dec_1) \sin(D_{12}) \right] \\ \cos(B) &= \left[\sin(H_2) - \sin(H_1) \cos(D_{12}) \right] / \left[\cos(H_1) \sin(D_{12}) \right] \\ \sin(Lat) &= \sin(Dec_1) \sin(H_1) + \cos(Dec_1) \cos(H_1) \cos(A \pm B) \end{split}$$

 $cos(LHA_1) = [sin(H_1) - sin(Dec_1)sin(Lat)] / [cos(Dec_1)cos(Lat)]$

D ₁₂	A	В
	A+B	A-B
Lat		
LHA ₁		
Long = LHA ₁ – GHA ₁		

West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Но	GHA	Dec
Sight 1					
Sight advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$a = i \cdot c \int_{-D}^{D} 1$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^L \frac{1}{\cos(L + x \cos C)} dx$		degrees
$= \frac{180}{\pi} \tan C \left[ln \left(\frac{\tan \left(45^\circ + \frac{L + D \cos C}{2} \right)}{\tan \left(45^\circ + \frac{L}{2} \right)} \right) \right]$		D = nautical miles traveled L = Original declination
Special case for traveling due east or west (C is 90° or 270°): $\sin \mathcal{C}$		
$\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		

 $cos(D_{12}) = sin(Dec_1) sin(Dec_2) + cos(Dec_1) cos(Dec_2) cos(GHA_1 - GHA_2)$ $cos(A) = [sin(Dec_2) - sin(Dec_1) cos(D_{12})] / [cos(Dec_1) sin(D_{12})]$

 $\cos(B) = [\sin(H_2) - \sin(H_1)\cos(D_{12})] / [\cos(H_1)\sin(D_{12})]$

 $sin(Lat) = sin(Dec_1)sin(H_1) + cos(Dec_1)cos(H_1)cos(A\pm B)$

 $cos(LHA_1) = [sin(H_1) - sin(Dec_1)sin(Lat)] / [cos(Dec_1)cos(Lat)]$

D ₁₂		A		В	
-----------------	--	---	--	---	--

	A+B	A-B
Lat		
LHA ₁		
Long = LHA ₁ – GHA ₁		

West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Но	GHA	Dec
Sight 1					
Sight advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$a = \frac{1}{1}$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^L \frac{1}{\cos(L + x \cos C)} dx$		degrees
$= \frac{180}{\pi} \tan C \left[ln \left(\frac{\tan \left(45^{\circ} + \frac{L + D \cos C}{2} \right)}{\tan \left(45^{\circ} + \frac{L}{2} \right)} \right) \right]$		D = nautical miles traveled L = Original declination
Special case for traveling due east or west (C is 90° or 270°):		
$\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		

$$\begin{split} \cos(D_{12}) &= \sin(Dec_1) \sin(Dec_2) + \cos(Dec_1) \cos(Dec_2) \cos(GHA_1 - GHA_2) \\ \cos(A) &= \left[\sin(Dec_2) - \sin(Dec_1) \cos(D_{12}) \right] / \left[\cos(Dec_1) \sin(D_{12}) \right] \\ \cos(B) &= \left[\sin(H_2) - \sin(H_1) \cos(D_{12}) \right] / \left[\cos(H_1) \sin(D_{12}) \right] \\ \sin(Lat) &= \sin(Dec_1) \sin(H_1) + \cos(Dec_1) \cos(H_1) \cos(A \pm B) \end{split}$$

 $cos(LHA_1) = [sin(H_1) - sin(Dec_1)sin(Lat)] / [cos(Dec_1)cos(Lat)]$

D ₁₂	A	В
	A+B	A-B
Lat		
LHA ₁		
Long = LHA ₁ – GHA ₁		

West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1.

	UT	Celestial Body	Но	GHA	Dec
Sight 1					
Sight advanced					
Sight 2					

Running Fix Adjustments

Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is +, S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$a = i \cdot c \int_{-D}^{D} 1$	$\theta_{Declination} = D \cos C$	C = Course of travel in
$\theta_{GHA} = \sin C \int_0^L \frac{1}{\cos(L + x \cos C)} dx$		degrees
$= \frac{180}{\pi} \tan C \left[ln \left(\frac{\tan \left(45^\circ + \frac{L + D \cos C}{2} \right)}{\tan \left(45^\circ + \frac{L}{2} \right)} \right) \right]$		D = nautical miles traveled L = Original declination
Special case for traveling due east or west (C is 90° or 270°): $\sin \mathcal{C}$		
$\theta_{GHA} = D \frac{\sin C}{\cos(L)}$		

 $cos(D_{12}) = sin(Dec_1) sin(Dec_2) + cos(Dec_1) cos(Dec_2) cos(GHA_1 - GHA_2)$ $cos(A) = [sin(Dec_2) - sin(Dec_1) cos(D_{12})] / [cos(Dec_1) sin(D_{12})]$

 $\cos(B) = [\sin(H_2) - \sin(H_1)\cos(D_{12})] / [\cos(H_1)\sin(D_{12})]$

 $sin(Lat) = sin(Dec_1)sin(H_1) + cos(Dec_1)cos(H_1)cos(A\pm B)$

 $cos(LHA_1) = [sin(H_1) - sin(Dec_1)sin(Lat)] / [cos(Dec_1)cos(Lat)]$

D_{12}		A		В	
----------	--	---	--	---	--

	A+B	A-B
Lat		
LHA ₁		
Long = LHA ₁ – GHA ₁		

West longitude is negative