Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1 .

	UT	Celestial Body	Ho	GHA	Dec
Sight 1					
Sight__ advanced					
Sight 2					

Running Fix Adjustments
Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is,+ S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$\theta_{G H A}=\sin C \int_{0}^{D} \frac{1}{\cos (L+x \cos C)} d x$	$\theta_{\text {Declination }=D \cos C}$	C $=$ Course of travel in degrees
$=\frac{180}{\pi} \tan C\left[\ln \left(\frac{\tan \left(45^{\circ}+\frac{L+D \cos C}{2}\right)}{\tan \left(45^{\circ}+\frac{L}{2}\right)}\right)\right]$		$\mathrm{D}=$ nautical miles traveled
	$\mathrm{L}=$ Original declination	
Special case for traveling due east or west (C is 90° or $\left.270^{\circ}\right):$		
$\theta_{G H A}=D \frac{\sin C}{\cos (L)}$		

$\cos \left(\mathrm{D}_{12}\right)=\sin \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{Dec}_{2}\right)+\cos \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{Dec}_{2}\right) \cos \left(\mathrm{GHA}_{1}-\mathrm{GHA}_{2}\right)$
$\cos (A) \quad=\left[\sin \left(\mathrm{Dec}_{2}\right)-\sin \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{D}_{12}\right)\right] /\left[\cos \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{D}_{12}\right)\right]$
$\cos (B) \quad=\left[\sin \left(\mathrm{H}_{2}\right)-\sin \left(\mathrm{H}_{1}\right) \cos \left(\mathrm{D}_{12}\right)\right] /\left[\cos \left(\mathrm{H}_{1}\right) \sin \left(\mathrm{D}_{12}\right)\right]$
$\sin ($ Lat $) \quad=\sin \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{H}_{1}\right)+\cos \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{H}_{1}\right) \cos (\mathrm{A} \pm \mathrm{B})$
$\cos \left(\mathrm{LHA}_{1}\right)=\left[\sin \left(\mathrm{H}_{1}\right)-\sin \left(\mathrm{Dec}_{1}\right) \sin (\right.$ Lat $\left.)\right] /\left[\cos \left(\mathrm{Dec}_{1}\right) \cos (\right.$ Lat $\left.)\right]$

\mathbf{D}_{12}		A	B
	Lat	A+B	A-B
LHA			
Long $=$ LHA $_{1}-$ GHA $_{1}$			

West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1 .

	UT	Celestial Body	Ho	GHA	Dec
Sight 1					
Sight__ advanced					
Sight 2					

Running Fix Adjustments
Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is,+ S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$\theta_{G H A}=\sin C \int_{0}^{D} \frac{1}{\cos (L+x \cos C)} d x$	$\theta_{\text {Declination }=D \cos C}$	$\mathrm{C}=$ Course of travel in degrees
$=\frac{180}{\pi} \tan C\left[\ln \left(\frac{\tan \left(45^{\circ}+\frac{L+D \cos C}{2}\right)}{\tan \left(45^{\circ}+\frac{L}{2}\right)}\right)\right]$		$\mathrm{D}=$ nautical miles traveled
		$\mathrm{L}=$ Original declination
Special case for traveling due east or west $\left(C\right.$ is 90° or $\left.270^{\circ}\right):$		
$\theta_{G H A}=D \frac{\sin C}{\cos (L)}$		

$\cos \left(\mathrm{D}_{12}\right) \quad=\sin \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{Dec}_{2}\right)+\cos \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{Dec}_{2}\right) \cos \left(\mathrm{GHA}_{1}-\mathrm{GHA}_{2}\right)$
$\cos (A) \quad=\left[\sin \left(\mathrm{Dec}_{2}\right)-\sin \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{D}_{12}\right)\right] /\left[\cos \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{D}_{12}\right)\right]$
$\cos (\mathrm{B})=\left[\sin \left(\mathrm{H}_{2}\right)-\sin \left(\mathrm{H}_{1}\right) \cos \left(\mathrm{D}_{12}\right)\right] /\left[\cos \left(\mathrm{H}_{1}\right) \sin \left(\mathrm{D}_{12}\right)\right]$
$\sin ($ Lat $) \quad=\sin \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{H}_{1}\right)+\cos \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{H}_{1}\right) \cos (\mathrm{A} \pm \mathrm{B})$
$\cos \left(\mathrm{LHA}_{1}\right)=\left[\sin \left(\mathrm{H}_{1}\right)-\sin \left(\mathrm{Dec}_{1}\right) \sin (\right.$ Lat $\left.)\right] /\left[\cos \left(\mathrm{Dec}_{1}\right) \cos (\right.$ Lat $\left.)\right]$

| D $_{12}$ | A | B | |
| ---: | :---: | :---: | :---: | :---: |
| | A+B | A-B | |
| Lat | | | |
| LHA 1 | | | |
| Long = LHA $1-$ GHA $_{1}$ | | | |

West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1 .

	UT	Celestial Body	Ho	GHA	Dec
Sight 1					
Sight__ advanced					
Sight 2					

Running Fix Adjustments
Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is,+ S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$\theta_{G H A}=\sin C \int_{0}^{D} \frac{1}{\cos (L+x \cos C)} d x$	$\theta_{\text {Declination }=D \cos C}$	C $=$ Course of travel in degrees
$=\frac{180}{\pi} \tan C\left[\ln \left(\frac{\tan \left(45^{\circ}+\frac{L+D \cos C}{2}\right)}{\tan \left(45^{\circ}+\frac{L}{2}\right)}\right)\right]$		$\mathrm{D}=$ nautical miles traveled
	$\mathrm{L}=$ Original declination	
Special case for traveling due east or west (C is 90° or $\left.270^{\circ}\right):$		
$\theta_{G H A}=D \frac{\sin C}{\cos (L)}$		

$\cos \left(\mathrm{D}_{12}\right)=\sin \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{Dec}_{2}\right)+\cos \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{Dec}_{2}\right) \cos \left(\mathrm{GHA}_{1}-\mathrm{GHA}_{2}\right)$
$\cos (A) \quad=\left[\sin \left(\mathrm{Dec}_{2}\right)-\sin \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{D}_{12}\right)\right] /\left[\cos \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{D}_{12}\right)\right]$
$\cos (B) \quad=\left[\sin \left(\mathrm{H}_{2}\right)-\sin \left(\mathrm{H}_{1}\right) \cos \left(\mathrm{D}_{12}\right)\right] /\left[\cos \left(\mathrm{H}_{1}\right) \sin \left(\mathrm{D}_{12}\right)\right]$
$\sin ($ Lat $) \quad=\sin \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{H}_{1}\right)+\cos \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{H}_{1}\right) \cos (\mathrm{A} \pm \mathrm{B})$
$\cos \left(\mathrm{LHA}_{1}\right)=\left[\sin \left(\mathrm{H}_{1}\right)-\sin \left(\mathrm{Dec}_{1}\right) \sin (\right.$ Lat $\left.)\right] /\left[\cos \left(\mathrm{Dec}_{1}\right) \cos (\right.$ Lat $\left.)\right]$

\mathbf{D}_{12}		A	B
	Lat	A+B	A-B
LHA			
Long $=$ LHA $_{1}-$ GHA $_{1}$			

West longitude is negative

Direct Calculation of Longitude and Latitude

You must set sight 1 as the celestial body with that is the farthest west while still being within 180° longitude of the other body. If both have the same GHA, choose the northernmost as sight 1 .

	UT	Celestial Body	Ho	GHA	Dec
Sight 1					
Sight__ advanced					
Sight 2					

Running Fix Adjustments
Calculate the amount to add to the GHA and Declination of a celestial body in order to advance it to the same time as a later sight. N is,+ S is -

Degrees of GHA to Add	Degrees of Declination to Add	Symbols
$\theta_{G H A}=\sin C \int_{0}^{D} \frac{1}{\cos (L+x \cos C)} d x$	$\theta_{\text {Declination }=D \cos C}$	$\mathrm{C}=$ Course of travel in degrees
$=\frac{180}{\pi} \tan C\left[\ln \left(\frac{\tan \left(45^{\circ}+\frac{L+D \cos C}{2}\right)}{\tan \left(45^{\circ}+\frac{L}{2}\right)}\right)\right]$		$\mathrm{D}=$ nautical miles traveled
		$\mathrm{L}=$ Original declination
Special case for traveling due east or west $\left(C\right.$ is 90° or $\left.270^{\circ}\right):$		
$\theta_{G H A}=D \frac{\sin C}{\cos (L)}$		

$\cos \left(\mathrm{D}_{12}\right) \quad=\sin \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{Dec}_{2}\right)+\cos \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{Dec}_{2}\right) \cos \left(\mathrm{GHA}_{1}-\mathrm{GHA}_{2}\right)$
$\cos (A) \quad=\left[\sin \left(\mathrm{Dec}_{2}\right)-\sin \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{D}_{12}\right)\right] /\left[\cos \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{D}_{12}\right)\right]$
$\cos (\mathrm{B})=\left[\sin \left(\mathrm{H}_{2}\right)-\sin \left(\mathrm{H}_{1}\right) \cos \left(\mathrm{D}_{12}\right)\right] /\left[\cos \left(\mathrm{H}_{1}\right) \sin \left(\mathrm{D}_{12}\right)\right]$
$\sin ($ Lat $) \quad=\sin \left(\mathrm{Dec}_{1}\right) \sin \left(\mathrm{H}_{1}\right)+\cos \left(\mathrm{Dec}_{1}\right) \cos \left(\mathrm{H}_{1}\right) \cos (\mathrm{A} \pm \mathrm{B})$
$\cos \left(\mathrm{LHA}_{1}\right)=\left[\sin \left(\mathrm{H}_{1}\right)-\sin \left(\mathrm{Dec}_{1}\right) \sin (\right.$ Lat $\left.)\right] /\left[\cos \left(\mathrm{Dec}_{1}\right) \cos (\right.$ Lat $\left.)\right]$

| D $_{12}$ | A | B | |
| ---: | :---: | :---: | :---: | :---: |
| | A+B | A-B | |
| Lat | | | |
| LHA 1 | | | |
| Long = LHA $1-$ GHA $_{1}$ | | | |

West longitude is negative

