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Introduction 

Historically the time of day was anchored by noon, or the time at which the sun reached its 
highest point in the sky. However, with the advent of clocks that were accurate enough to keep time 
over weeks and months a problem arose. Clocks are made to keep “mean” time, namely they divide 
the day into hours, and the hour is defined to be 1/24th of the length of a day averaged over a year.  
For such a clock noon as given by mean time does not always coincide with noon as defined by the 
sun. In fact the two are coincident only four times a year. 

The difference in time between solar noon as displayed by a sundial and noon mean time as 
kept by a clock is given by the “Equation of Time” (EoT). More generally the EoT gives the 
difference at any time between solar time and mean time. The major contributors to this difference 
are the “eccentricity” or elliptical nature of the earth’s orbit around the sun, and the tilt of the earth’s 
axis relative to its orbital plane. The values for the EoT are usually given in a table with one value 
per day, namely the difference between solar time and mean time at noon at the Greenwich 
Observatory. Because the year is approximately 365.25 days long this table changes every year in a 
four-year cycle, and reverts to the original values (approximately) every leap year. 

The goal of this note is to develop a relatively simple expression for the EoT using a few basic 
relationships from geometry and physics. The starting place is the realization that the EoT would be 
zero for all times if the earth’s orbit was circular and its rotation axis was perpendicular to its orbital 
plane. The second thing to realize is that the two effects giving rise to non-zero EoT values can be 
treated independently and their effects can be added together. 

Effect of Elliptical Orbit 
First we’ll consider the earth’s elliptical orbit. Because this ellipse has a small eccentricity of 

only 0.017 (defined as ε = √((a2-b2)/a2) where a is the major axis and b is the minor axis), we can 
treat the orbit as circular and introduce a simple radial oscillation as a small perturbation: 

r(θ) ≅ r0 – δ cos(θ−θP) 
Here r is the orbit radius at a given orbital angle θ, r0 is the average radius, δ is half the difference 
between the obit’s radius at aphelion and at perihelion, and θP is the orbital angle of the perihelion. 
Note that because of the inverse square nature of the gravitational force a planetary orbit has exactly 
one radial oscillation per orbit, namely its orbit is an ellipse with the sun at the focus.  
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Next we invoke the law of Conservation of Angular Momentum, which for a planet specifies: 
   mrvC = mr2ω = mr0

2ω0 = constant 
where m is the mass of the planet, vC is its circumferential velocity, ω is its orbital angular velocity, 
and ω0 is the value of ω at r=r0. Combining this relationship with the equation for r(θ) we get: 

ω(θ) = ω0r0
2/r2 ≅ ω0/(1 – (δ/r0) cos(θ−θP))2  

The ratio δ/r0 is equivalent to the eccentricity, so δ/r0 = ε << 1 and we can further simplify this as: 
ω(θ) ≈ ω0×(1 + (2δ/r0) cos(θ−θP)) = ω0 + 2εω0 cos(θ−θP) 

The second term in the expression for ω(θ) gives the amount that the angular velocity deviates 
from its average value, ω0, as the earth moves around its orbit. Note that maximum angular velocity 
occurs when θ = θP and the earth is closest to the sun. If we integrate ω(θ) over time we can get an 
expression for θ(t). This integration can be done iteratively by first ignoring the small second term to 
get θ(t)–θP ≈ ω0 t, where θ at t=0 is defined to be θp. For the next integration iteration this 
approximation can then be substituted back into the second term yielding: 

    θ(t)–θP ≈ ω0 t + 2ε sin(ω0 t) 
Now the second term gives the orbital angular deviation of the planet from the location it would 

have had if its orbit were circular. If the planet is advanced in its orbit by such a deviation, it will 
have to rotate further around on its axis in order to have the same angular alignment with the sun. In 
other words for a particular location of the earth’s surface, solar noon would be delayed while the 
earth rotates the additional amount given by the second term. The time delay for this additional 
rotation is just given by the second term divided by the angular velocity, which we can take as ω0. 
Hence the second term divided by ω0 is just the negative of the Equation of Time, provided that EoT 
is defined as the value of solar time minus the value of mean time: 

   EoTE ≈ –(2ε/ω0) sin(ω0 t) ≈ –(2ε/ω0) sin(θ−θP) 
Here the subscript E signifies that this is the EoT term resulting from the earth’s elliptical orbit, and 
the expression is given either as a function of time or of orbit angular position. EoTE is plotted for 
the year 2013 as the blue curve in the figure at the end. 

Effect of Rotation Axis Tilt 

Next we will develop a formula for the Equation of Time term resulting from the tilt of the 
earth’s axis, which we’ll name EoTT. The starting place, as before, is a circular orbit for the earth 
with its rotation axis perpendicular to the orbital plane, which results in a zero value for EoT.  

Consider the location on the earth’s surface where the sun is currently directly overhead, 
namely at the zenith. We’ll call this location the zenith point. The zenith point is located on a 
meridian, or great circle line extending from the North Pole to the South Pole. For every point along 
this meridian the solar time is currently noon. Note that this is true regardless of whether the earth’s 
axis is perpendicular or tilted relative to orbital plane. 

Now we will tilt the earth by rotating it through an angle α about an axis passing through its 
equator. Furthermore we associate a direction with the tilt axis such that positive α corresponds to a 
counter-clockwise (or right-handed) rotation around the axis. Note that as the tilted earth orbits 
around the sun the tilt axis will continue point in the same direction due to the conservation of 
angular momentum.  
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Around the earth’s orbit there are four special cases to consider: the tilt axis is parallel or anti-
parallel to the earth’s direction of motion and the tilt axis is parallel or anti-parallel to the radius 
vector pointing from the sun to the earth. For positive α the first two cases are just the winter and 
summer solstices and the latter two cases are the spring and autumn equinoxes. For our discussion 
we’ll define the orbital angular location of the winter solstice to be θS. 

For the two solstices, when θ = θS or θS+π, the zenith point as defined above moves along its 
own meridian as the earth is tilted. In other words the meridian defining solar noon does not change 
and thus EoTT is zero for any value of the tilt angle α.  

For the equinoxes, when θ = θS+π/2 or θS+3π/2, the zenith point is actually located on the tilt 
axis. Therefore neither the zenith point nor its associated meridian move as the earth is tilted, so as 
with the solstices, EoTT is zero for all α. 

For the more general situation let us consider the range of θ between the spring equinox and the 
summer solstice. (The result will be valid for all θ, but for visualization purposes it is useful to focus 
on one quadrant.) As the earth is tilted by an angle α, the zenith point moves counter-clockwise 
along a circular path on the earth’s surface. The center of this circle is just the tilt axis, and its radius 
is equal to the earth’s orbital angular distance from the spring equinox, or θ–θS–π/2 = θ–θE, where 
θE is the orbital angle of the equinox. (As a sanity check note that the radius goes to zero at the 
equinox meaning the zenith point doesn’t move, and it goes to π/2 at the solstice meaning the zenith 
point moves along a great circle, namely its meridian.)  

As the earth is tilted and the zenith point moves along a circle, the meridian associated with the 
moving zenith point cuts across the circle forming a chord. Because the circle is centered on the tilt 
axis, which is on the equator, the meridian chord interests the circle at points that are equidistant 
from the original location of the zenith point. Furthermore the angular distance of the original zenith 
point from this new meridian is equivalent to EoTT. By definition it is currently solar noon along the 
meridian associated with the new zenith point, but it would have been solar noon at the original 
zenith point if the earth had not been tilted.  

        
The distance between the original zenith point and the meridian associated with the new zenith 

point is just the sagitta of the chord formed by new meridian. If we were dealing with planar 
geometry the sagitta would be given by the radius of the circle times (1–cos α). However, in this 
case we need to use spherical geometry for the solution. Using Napier’s Rules1 for right spherical 
triangles we can write: 

   Sagitta = θ–θE – arctan(cos α tan(θ–θE)) 
                                                
1 Bowditch, Nathaniel; The American Practical Navigator; US NIMA; 2002 Edition; p 326. 
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where θ–θE is the radius of the circle and α is the half angle subtended by the chord. This is 
equivalent to EoTT expressed in units of orbital angle, so we divide by ω0 to obtain time units: 

   EoTT = (θ–θE – arctan(cos α tan(θ–θE))) / ω0 
The expression above was derived for the half year around the spring equinox, however, if θE 

is taken to mean the orbital angle of either equinox, then the expression can be used for both. EoTT 
is plotted for the year 2013 as the green curve in the figure at the end. 

Note that near an equinox, for small values of θ–θE, EoTT simplifies to (θ–θE) × (1–cos α) / ω0, 
which is just the result from planar geometry. Also note that the expression for EoTT is difficult to 
calculate near a solstice where the arctan argument approaches infinity. However, near either solstice 
the expression can be simplified to (θ–θS) × (1–1/cos α) / ω0, where θS is the orbital angle of the 
solstice. From these simplified forms it can be seen that EoTT is zero at both equinoxes and solstices. 

Summary 
Finally we obtain the complete Equation of Time by adding EoTE and EoTT: 
      EoT ≈ (–2ε sin(θ−θP) + θ–θE – arctan(cos α tan(θ–θE))) / ω0 

Here EoT is expressed as a function of the orbital angle, θ, of the earth. We can instead give EoT as 
a function of mean time by replacing θ with ω0t, θP with ω0tP, and θE with ω0tE: 

      EoT ≈ (–2ε sin ω0(t−tP) + ω0(t–tE) – arctan(cos α tan ω0(t–tE))) / ω0 
This expression is shown as a function of calendar date for 2013 by the red curve in the figure 
below. The only parameters required for the calculation are ε, tP, tE, α, and ω0. For comparison we 
show a calculation of EoT by NOAA2 for 2013 as the dashed curve in the figure. As can be seen the 
expression we have developed for EoT agrees very well with the NOAA calculation.  
 

        
                                                
2 Taken from NOAA_Solar_Calculations_Day.xls @ www.srrb.noaa.gov/highlights/sunrise. 
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