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In this case, t0.025,3 = 3.183 and the 95% probable error for the angular sum is

�95% = 3.183(24.7′′) = ±78.6′′

Thus, the traverse angles are well within the range of allowable error. We
cannot reject the null hypothesis that the error in the angles is not statistically
equal to zero. Thus, the survey meets the minimum level of angular closure
at a 95% probable error. However, it must be remembered that because of the
possibility of Type II errors, we can only state that there is no statistical reason
to believe that there might be a blunder in the angle observations.

Example 7.9 presents another question for the statistician or surveyor. That
is, should a surveyor allow a field crew to have this large an angular misclosure
in the traverse? Statistically, the answer would seem to be yes, but recall that
the target- and instrument-centering errors affect angle observations only if the
instrument and targets are reset after each observation. Since this is seldom done
in practice, these two errors should not be included in the summation of the
angles. Instead, the allowable angular misclosure should be based solely on the
pointing and reading errors. For example, if the angles were observed with a total
station having a DIN 18723 standard of ±1′′, by Equation (7.7) the pointing and
reading error for each angle would be

σαpr = ±2 × 1′′
√

2
= ±1.4′′

By Equation (6.19), the error in the summation of the five angles would be
±1.4′′√5 = ±3.2′′. Using the same critical t value of 3.183, the allowable error
in the angular misclosure should only be 3.183 × 3.2′′ = ±10′′. If this instrument
were used in Example 7.9, the field-observed angular closure of 30′′ would be
unacceptable and would warrant reobservation of some or all of the angles.

As stated in Sections 7.6 and 7.7, the angular misclosure of 78.6′′ computed
in Example 7.9 will only be noticed when the target and instrument were reset on
a survey. This is most likely to occur in a resurvey, during which the centering
errors of the target and instrument from the original survey will be present in the
record directions. Thus, record azimuths or bearings could disagree from those
determined in the resurvey by this amount, assuming that the equipment used
in the resurvey is comparable or of higher quality than that used in the original
survey.

7.11 ERRORS IN ASTRONOMICAL OBSERVATIONS FOR AZIMUTH

The total error in an azimuth determined from astronomical observations depends
on errors from several sources, including those in timing, the observer’s latitude
and longitude, the celestial object’s position at observation time, timing accuracy,
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instrument optics, atmospheric conditions, and others, as identified in Section
7.2. The error in astronomical observations can be estimated by analyzing the
hour-angle formula, which is

z = tan−1 sin t

cos φ tan δ − sin φ cos t
(7.25)

In Equation (7.25), z is the angle used to compute the azimuth of the celestial
object at the time of the observation, t the t angle of the PZS triangle at the
time of observation, φ the observer’s latitude, and δ the object’s declination at
the time of the observation.

The t angle is a function of the local hour angle (LHA) of the sun or star
at the time of observation. That is, when the LHA <180◦, t = LHA; otherwise,
t = 360◦ − LHA. Furthermore, LHA is a function of the Greenwich hour angle
(GHA) of the celestial body and the observer’s longitude; that is,

LHA = GHA + λ (7.26)

where λ is the observer’s longitude, considered positive for eastern longitude and
negative for western longitude. The GHA increases approximately 15◦ per hour
of time, and thus an estimate of the error in the GHA is approximately

σt = 15◦
σT (7.27)

where σT is the estimated error in time (in hours). Similarly, by using the dec-
lination at 0h and 24h, the amount of change in declination per second can be
derived and thus the estimated error in the hour angle determined.

Using Equation (6.16), the error in a star’s azimuth is estimated by taking the
partial derivative of Equation (7.25) with respect to t , δ, φ, and λ. To do this,
simplify Equation (7.25) by letting

F = cosφ tanδ − sinφ cost (7.28a)
and

u = sint × F −1 (7.28b)

Substituting Equations (7.27), Equation (7.25) is rewritten as

z = tan−1 sin t

F
= tan−1 u (7.29)

From calculus it is known that

d tan−1 u

dx
= 1

1 + u2

du

dx
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Applying this fundamental relation to Equation (7.28) and letting G represent
GHA yields

∂z

∂G
= 1

1 + [
sin (G − λ) /F

]2

du

dG
= F 2

F 2 + sin2 (G − λ)

du

dG
(7.30)

Now du/dG is

du

dG
= cos (G − λ)

F
− sin (G − λ)

F 2
sin φ sin (G − λ)

= cos (G − λ)

F
− sin2 (G − λ) sin φ

F 2

and thus

du

dG
= F cos (G − λ) − sin2 (G − λ) sin φ

F 2
(7.31)

Substituting Equation (7.30) into Equation (7.29) and substituting in t for G − λ

yields

∂z

∂G
= F cos t − sin2 t sin φ

F 2 + sin2 t
(7.32)

In a similar fashion, the following partial derivatives are developed from Equation
(7.25):

dz

dδ
= − sin t cos φ

cos2 δ
(
F 2 + sin2 t

) (7.33)

∂z

∂φ
= sin t cos t cos φ + sin t sin φ tan δ

F 2 + sin2 t
(7.34)

∂z

∂λ
= sin2 t sin φ − F cos t

F 2 + sin2 t
(7.35)

In Equation (7.35), t is the t angle of the PZS triangle, z the celestial object’s
azimuth, δ the celestial object’s declination, φ the observer’s latitude, λ the
observer’s longitude, and F = cos φ tan δ − sin φ cos t .

If the horizontal angle, H , is the observed angle to the right from the line to
the celestial body, the equation for a line’s azimuth is

Az = z + 360◦ − H (7.36)

Therefore, the error contributions from the horizontal angle observation must be
included in computing the overall error in the azimuth. Since the distance to the
star is considered infinite, the estimated contribution to the angular error due to
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the instrument-centering error can be determined with a formula similar to that
for the target-centering error with one pointing. That is,

σαi = σi

D
(7.37)

where σi is the centering error in the instrument, and D is the length of the
azimuth line in the same units. Note that the results of Equation (7.37) are in
radian units and must be multiplied by ρ to yield a value in arc seconds.

Example 7.10 Using Equation (7.25), the azimuth to Polaris was found to be
0◦01′31.9′′. The observation time was 1:00:00 UTC with an estimated error of
σT = ±0.5s . The Greenwich hour angles to the star at 0h and 24h UTC were
243◦27′05.0′′ and 244◦25′50.0′′, respectively. The LHA at the time of the obser-
vation was 181◦27′40.4′′. The declinations at 0h and 24h were 89◦13′38.18′′
and 89◦13′38.16′′, respectively. At the time of observation, the declination was
89◦13′38.18′′. The clockwise horizontal angle observed from the backsight to a
target 450.00 ft was 221◦25′55.9′′. The observer’s latitude and longitude were
scaled from a map as 40◦13′54′′N and 77◦01′51.5′′W, respectively with estimated
errors of ±1′′. The vertical angle to the star was 39◦27′33.1′′. The observer’s esti-
mated errors in reading and pointing are ±1′′ and ±1.5′′, respectively, and the
instrument was leveled to within 0.3 of a division with a bubble sensitivity of
25′′/div. The estimated error in instrument and target centering is ±0.003 ft.
What are the azimuth of the line and its estimated error? What is the error at the
95% level of confidence?

SOLUTION The azimuth of the line is Az = 0◦01′31.9′′ + 360 −
221◦25′55.9′′ = 138◦35′36′′. Using the Greenwich hour angles at 0h and
24h, an error of 0.5s time will result in an estimated error in the GHA of

±360◦ + (
244◦25′50.0′′ − 243◦27′05.0′′)

24h × 3600s/h
0.05s = ±7.52′′

Since t = 360◦ − LHA = 178◦32′19.6′′, F in Equations (7.29) through (7.34) is

F = cos(40◦13′54′′) tan(89◦13′38.18′′) − sin(40◦13′54′′) cos(178◦32′19.6′′)

= 57.249

The error in the observed azimuth can be estimated by computing the indi-
vidual error terms as follows:

(a) From Equation (7.32) the error with respect to the GHA, G, is

∂z

∂G
σG = 57.249 cos(178◦32′19.6′′) − sin2(178◦32′19.6′′) sin(40◦13′54′′)

57.2492 + sin2(178◦32′19.6′′)
7.52′′

= ±0.13′′
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(b) By observing the change in declination, it is obvious that for this observa-
tion, the error in a time of 0.5s is insignificant. In fact, for the entire day,
the declination changes only 0.02′′. This situation is common for stars.
However, the sun’s declination may change from only a few seconds daily
to more than 23 minutes per day, and thus for solar observations, this error
term should not be ignored.

(c) From Equation (7.34) the error with respect to latitude, φ, is

∂z

∂φ
σφ = ± sin t cos t cos φ + sin t sin φ tan δ

F 2 + sin2 t
σφ = ±0.0004′′

(d) From Equation (7.35) the error with respect to longitude, λ, is

± sin2 (
178◦32′19.6′′) sin

(
40◦13′54′′) − 57.249 cos

(
178◦32′19.6′′)

57.2492 + sin2 (178◦32′19.6′′)
× 1′′

= ±0.02′′

(e) The circles are read both when pointing on the star and on the azimuth
mark. Thus, from Equation (7.2), the reading contribution to the estimated
error in the azimuth is

σαr = ±σr

√
2 = ±1′′√2 = ±1.41′′

(f) Using Equation (7.6), the estimated error in the azimuth due to pointing is

σαp = ±σp

√
2 = ±1.5′′√2 = ±2.12′′

(g) From Equation (7.8), the estimated error in the azimuth due to target cen-
tering is

σ ′′
αt

= ± d

D
= ±0.003

450
206,264.8′′/rad = ±1.37′′

(h) Using Equation (7.37), the estimated error in the azimuth due to instrument
centering is

σ ′′
αi

= ± d

D
= ±0.003

450
206,264.8′′/rad = ±1.37′′

(i) From Equation (7.23), the estimated error in the azimuth due to the leveling
error is

σαb = ±fdμ tan v = ±0.3 × 25′′ tan(39◦27′33.1′′) = ±6.17′′
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Parts (a) through (i) are the errors for each individual error source. Using
Equation (6.18), the estimated error in the azimuth observation is

σAZ =
√

(0.13′′)2 + (1.32′′)2 + (0.02′′)2 + (0.0004′′)2 + (2.12′′)2 + 2 (1.37′′)2 + (6.17′′)2

= ±7.0′′

Using the appropriate t-value of t0.025,1 from Table D.3, the 95% error is

σAZ = ±12.705(7.0′′) = ±88.9′′

Notice that in this problem, the largest error source in the azimuth error is
caused by the instrument-leveling error.

7.12 ERRORS IN ELECTRONIC DISTANCE OBSERVATIONS

All electronically measured distance observations are subject to instrumental
errors that manufacturers list as constant, a , and scalar, b, error. A typical spec-
ified accuracy is ±(a + b ppm). In this expression, a is generally in the range
1 to 10 mm, and b is a scalar error, which typically has the range 1 to 10
parts per million (ppm). Other errors involved in electronically measured dis-
tance observations stem from the target- and instrument-centering errors. Since
in any survey involving several stations, these errors tend to be random, they
should be combined using Equation (6.18). Thus, the estimated error in an EDM
observed distance is

σD =
√

σ 2
i + σ 2

t + a2 + (D × b ppm)2 (7.38)

where σD is the error in the observed distance D , σi the instrument-miscentering
error, σt , the reflector-miscentering error, and a and b the instrument’s specified
accuracy parameters.

Example 7.11 A distance of 453.87 ft is observed using an EDM with a man-
ufacturer’s specified accuracy of ±(3 mm + 3 ppm). The instrument is centered
over the station with an estimated error of ±0.003 ft, and the reflector, which
is mounted on a handheld prism pole, is centered with an estimated error of
±0.01 ft. What is the error in the observed distance? What is the E95 value?

SOLUTION Converting millimeters to feet using the survey foot2 definition
gives us

0.003
39.37 in.

12 in.
= 0.0098 ft

2The survey foot definition is 1 meter = 39.37 inches, exactly.
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(6.15)

If there is only one function Z , involving n unrelated quantities, x1, x2, . . . , xn ,
Equation (6.15) can be rewritten in algebraic form as

σZ =
√

(
∂Z

∂x1
σx1

)2

+
(

∂Z

∂x2
σx2

)2

+ · · · +
(

∂Z

∂xn
σxn

)2

(6.16)

Equations (6.14), (6.15), and (6.16) express the special law of propagation
of variances (SLOPOV). These equations govern the manner in which errors
from statistically independent observations (i.e., σxi xj = 0) propagate in a func-
tion. In these equations, individual terms represent the individual contributions
to the total error that occur as the result of observational errors in each inde-
pendent variable. When the size of a function’s estimated error is too large,
inspection of these individual terms will indicate the largest contributors to the
error. The most efficient method to reduce the overall error in the function is
to examine ways to reduce the largest individual error terms in Equation (6.16)
closely.

6.1.1 Generic Example

Let A = B + C , and assume that B and C are independently observed quantities.
Note that ∂A/∂B = 1 and ∂A/∂C = 1. Substituting these into Equation (6.16)
yields

σA =
√

(1σB )2 + (1σC )2 (6.17)


