The Method of the Latitude at Sea, by taking two Altitudes, either in the Forenoon or Afternoon having the intermediate time measured by common Watch, with Ease and Accuracy, independent of the Sun's Meridian Altitude.

The New Practical Navigator, $10^{\text {th }}$ Edition by John Hamilton Moore (p. 206)
https://books.google.com/books/about/The New Practical_Navigator.html?id=11sUAAAAQ AAJ
Suppose the Sun's altitude is observed to be h_{1} at hour angle H_{1} and h_{2} at H_{2}. Then the usual cosine formula gives

$$
\begin{aligned}
& \sin h_{1}=\sin L \sin \delta+\cos L \cos \delta \cos H_{1} \\
& \sin h_{2}=\sin L \sin \delta+\cos L \cos \delta \cos H_{2}
\end{aligned}
$$

where L is the latitude by account and δ is the declination of the Sun. Subtracting the two gives

$$
\left(\sin h_{2}-\sin h_{1}\right) \sec L \sec \delta=\cos H_{2}-\cos H_{1}=2 \sin \left(\frac{H_{2}+H_{1}}{2}\right) \sin \left(\frac{H_{1}-H_{2}}{2}\right)
$$

and hence

$$
2 \sin \left(\frac{H_{2}+H_{1}}{2}\right)=\frac{\left(\sin h_{2}-\sin h_{1}\right) \sec L \sec \delta}{\sin \left(\frac{H_{1}-H_{2}}{2}\right)}
$$

This allows the hour angle at the midpoint of the elapsed interval to be determined. From it and half the elapsed interval the hour angle at which the second sight was made is found from

$$
H_{2}=\left(\frac{H_{2}+H_{1}}{2}\right)-\left(\frac{H_{1}-H_{2}}{2}\right)
$$

If h_{0} is the Sun's meridian altitude then

$$
\sin h_{0}=\sin L \sin \delta+\cos L \cos \delta
$$

and subtracting

$$
\sin h_{2}=\sin L \sin \delta+\cos L \cos \delta \cos H_{2}
$$

which yields

$$
\sin h_{0}=\sin h_{2}+\cos L \cos \delta\left(1-\cos H_{2}\right)
$$

The meridian altitude is used in the reduction of a noon sight in the usual way.

