Hints to Travellers, graphic method of clearing a lunar distance by the scale of chords, 1883, page 73-74

Symbols used:
$H^{\prime} \quad$ apparent altitude of moon
$h^{\prime} \quad$ apparent altitude of the other body
$D^{\prime} \quad$ apparent distance
$D \quad$ true distance
The scale of chords referred to is a scale where you get the length of a chord with a pair of compasses from a given angle θ in degrees. The length of a chord c,
$c(\theta)=2 \cdot r \cdot \sin (\theta / 2), \quad$ where r is the radius of the circle.
According to the text the radius should be taken from the scale for an angle of 60° and as $c\left(60^{\circ}\right)$ equals r we can treat r as unity.

In the figure on page 74 call the crossing closest to the moon symbol M and the crossing closest to the planet symbol N. Angle BAS is the apparent distance D^{\prime}, angle MAy is $90^{\circ}-H^{\prime}$, and angle SAS' ${ }^{\prime}$ is $90^{\circ}-h$.

The segment AM thus equals $\sin H^{\prime}$ and segment AN equals $\sin h^{\prime}$. Prolong the segment $S^{\prime}{ }^{\prime} S^{\prime}$ until it meets the prolonged segment $A B$. Call this point F. In the triangle $A F N$ the angle at F equals $90^{\circ}-D^{\prime}$ and hence angle E in triangle MEF equals D^{\prime}.

In triangle FAN segment AF equals $\sin h^{\prime} / \cos D^{\prime}$ and hence MF is $\sin h^{\prime} / \cos D^{\prime}-\sin H^{\prime}$.
The correction ME is found from the triangle FEM as $\tan \mathrm{D}^{\prime}=\left(\sin h^{\prime} / \cos D^{\prime}-\sin H^{\prime}\right) / \mathrm{ME}$, giving
$\mathrm{ME}=\sin h^{\prime} / \sin D^{\prime}-\sin H^{\prime} / \tan D^{\prime}$.
The length of ME is measured with the compass and the scale of chords gives the result as an angle in degrees, instead of a fraction. Let's call that angle γ°. If we divide γ° by $180^{\circ} / \pi=57.3^{\circ}$ we get the angle $\gamma=\gamma^{\circ} / 57.3^{\circ}$ in radians, or as a fraction. Now
$\mathrm{ME}=2 \cdot \sin (\gamma / 2)=2 \cdot\left(\gamma / 2-(\gamma / 2)^{3} / 3!+\ldots\right)=\gamma-\gamma^{3} / 24+\ldots \approx \gamma$
This approximation seems acceptable, compared to all other uncertainties in this graphical solution.
"Multiply the line of correction by the horizontal parallax, expressed in minutes and decimals of a minute, and divide the product by 62 when the correction is subtractive; but when additive, divide by $53 ; \ldots$...

Now, $62=57.3 \cdot(1+0.08)$, and $53=57.3 \cdot(1-0.08)$ and this gives an explanation to the different constants. When the correction is subtractive, we have
correction $=\gamma^{\circ} \cdot H P / 62=\gamma \cdot H P /(1+0.08) \approx \gamma \cdot H P \cdot(1-0.08)=\gamma \cdot H P-0.08 \cdot \gamma \cdot H P$
and thence $D=D^{\prime}-\gamma \cdot H P+0.08 \cdot \gamma \cdot H P$;
and when additive
correction $=\gamma^{\circ} \cdot H P / 53=\gamma \cdot H P /(1-0.08) \approx \gamma \cdot H P \cdot(1+0.08)=\gamma \cdot H P+0.08 \cdot \gamma \cdot H P$
and thence $D=D^{\prime}+\gamma \cdot H P+0.08 \cdot \gamma \cdot H P$.
To summarize: $D=D^{\prime} \pm \gamma \cdot H P+0.08 \cdot \gamma \cdot H P$.
The last term, $0.08 \cdot \gamma \cdot H P$, is always positive and is an approximation of the "third" or "Q-" correction given in Bowditch (1851) table XLVIII.

