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CHAPTER I

INTRODUCTION

Navigation is the art and the science of conducting a vessel on

the water, under the water, or in the air, from one position to another.

The problems of navigation are those of direction, distance, and

location. Celestial navigation, or observational navigation, is the

determination of location by the use of celestial objects. ^ Having

measured the altitude of a known celestial body at a known time, an

observer determines the relations between latitude, declination, alti-

tude, meridian angle, and azimuth by solving the astronomical or

navigational triangle.

In modern times, successful navigation by observation requires

six essentials, namely;

1) a map or chart to determine directions and distances,

2) a compass to determine that the vessel is being steered
in the desired direction,

3) a sextant, or other instrument, to determine the altitude
of celestial objects.

Navigation may be divided into three main categories. In addi-
tion to observational navigation defined above, there is (a) geo-
navigation, or navigation by means of landmarks, soundings, and
other aids, and (b) electronic navigation, or navigation by means of
the various electronic devices such as radar, loran, et cetera.
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4) a chronometer to determine the time at which the

observation is made,

5) an almanac to determine the celestial coordinates

of the observed body, and

6) a method to determine the relationships between the

celestial and terrestrial coordinates by solving the

navigational or astronomical triangle.

The object of this study is to trace the history and development

of these six essentials together with important auxiliary aids, through

the ages until after World War II, excluding those that pertain to the

fields of geo-navigation and electronic navigation.

This study is confined to celestial navigation for two reasons.

In the first place, there is little mathematics involved in geo-

navigation, except for the maps. In the second place, electronic

navigation is still in an unsettled state. There are several different

systems in various stages of development and any analysis would be

untimely.

A chronological study of the original sources is to be made as

far as possible. When these are not available, commentaries, trans-

lations, and later editions are to be used. The division into chapters

is to be made on a convenient basis.



CHAPTER II

FROM EARLY TIMES TO 1400 A.D.

The Mediterranean Sea, the great sea that separates Europe

from Africa, is approximately 2500 miles in length between the

Straits of Gibraltar and the coast of Syria, and approximately 1200

miles in width between Venice and the Gulf of Sidra off the coast of

Tripoli. On this sea, navigation was first practiced by the western

world.

The credit of being the first to explore the Mediterranean be-

longs to the Minoans or Cretans. ^ The Egyptians were familiar with

the southeastern corner very early in their civilization for the first

recorded voyages by them took place at the end of the Third Dynasty

(3100 B.C.).^ The Egyptians did not maintain an interest in maritime

enterprises, nor did they establish any colonies; and, by the end of

the second millenium B.C. , they had renounced seafaring. ^ Tyre,

the capital of Phoenicia, claimed to have been the first "to invent

navigation and to have taught mankind the art of braving the winds and

^Walter W. Hyde, Ancient Greek Mariners (New York:
Oxford University Press, 1947), p. 37.

^Ibid.
, p, 31.

^Ibid.
, p. 32

3
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waves by the assistance of a frail bark.

As early as the fourteenth or fifteenth century B.C. ,
possibly

earlier, the Phoenicians were engaged in trade with Egypt, with the

island of Cyprus, and with the Libyans on the coast of Africa. ^ Un-

like the Egyptians, the Phoenicians established colonies from Crete

to Spain. Although most of them were commercial depots, some be-

came important cities, such as Carthage, Utica, and Palermo. ^

The Greeks^ and Romans^ also made voyages on the Mediter-

ranean. They, as well as the Phoenicians, made some use of the sun

¥
and stars to determine their course when they ventured beyond the

sight of land. ^

Over the China Sea and the Indian Ocean, the steadiness in the

^Oliver Goldsmith, Alexander Reduces Tyre; Later Founds
Alexandria. Rossiter Johnson, Editor-in-Chief , "The Great Events
by Famous Historians," (New York: The National Alumni, 1905)

Volume II, p. 135.

^J. N. Lamed, History of the World (New York: World Syndi-
cate Company, Inc. , 1915) Volume I, p. 89.

^Hyde, op. cit . , p. 43.

“

^Ibid.
, p. 53 ff.

^Ibid.
, p. 134.

^R. A. Curtiss, An Account of the Rise of Navigation
(Washington: Annual Report of the Smitksonian Institute, 1918) p. 127.
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direction of the monsoons was observed. Hippalus, a Greek merchant,

discovered about the beginning of the Christian era that he could use

the monsoons during the summer months to sail to India and use the ^
counter-monsoons to return during the winter months. ^

These ancient navigators had manuals, called peripli, which gave

the distances along the coast line beginning at a designated place and

making a complete circuit. The oldest and most complete periplus

which has survived. The Periplus of the Mediterranean and Black Sea,

2was written sometime between the sixth and fourth century B.C. It

is attributed to a Scylax of Caryanda and is sometimes known as the

Periplus of Scylax . The Periplus of the Erythraean Sea , a guide for

sailing from the Red Sea to India was written about 60 A. D. ^ One of

a later date was the Stadiamus or Circumnavigation of the Great Sea

compiled sometime between the second and fifth centuries A.

^J, Q. Stewart, and N. L. Pierce, Marine and Air Navigation
(Boston: Ginn and Company, 1944) p. 391^

^Lawrence C. Wroth, The Way of a Ship (Portland, Maine: The
Anthoensen Press, 1937) p. 11.

^The Periplus of the Erythraean Sea, Wilfred H. Schoff, trans. ,

(New York: Longmans Green and Company, 1912) p. 15,

4
Wroth, op. cit.

, p. 12,
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Lloyd A. Brown is of the opinion that these peripli were originally

designed to accompany a sea chart of some type. ^ Unfortunately,

none of these charts are known to exist today.

The historian Herodotus (484 - 425 B.C.) reported that some

Phoenicians circumnavigated Africa about 600 B.C. for the Egyptian

king Necho. They made the voyage in about three years including

stops along the way to plant and harvest crops. The Phoenicians said

that when they had rounded Africa and set a northwesterly course the

sun was on the right hand. Here was factual evidence that the Phoe-

nicians were south of the equator. Herodotus believed that the voyage

was made but doubted that the sun could have been in the position

described. In any event, no charts, peripli, or other evidence have

been found to substantiate this feat.

There are records of maps in Babylon as far back as 3800 B.C.,

while cadastral surveys, that is surveys relating to boundaries and

subdivisions of land, are recorded on clay tablets made in 2300 B.C. ^

Lloyd A. Brown, The Story of Maps (Boston: Little, Brown and
Company, 1950) p. 120.

2Henry Cary (translator), Herodotus (London: Georize Bell and
Sons, 1891) Book 4, 42, p. 250.

3
"Maps, " Encyclopedia Britannica, Volume XVII, 11th edition.

p. 634.
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In Egypt during the reign of Rameses II (c. 1250 B.C.) maps of the

boundaries of the landed estates were made. ^ The first known map

of the world was made by Anaximander (611 - 546 B.C.). He repre-

sented the earth as a cylinder suspended from the vault of the

heavens-, yet, at about this same time, Pythagoras (580 - 497 B.C.),

following in the footsteps of Thales (640 - 550 B.C.), may have taught

that the earth is spherical. Hicataeus (c. 517 B.C.), who wrote the

first geography. The Periodos, sketched the earth as a disc with only

two continents, Europe and Asia, of equal size, surrounded by the

4ocean.

Although the Chinese used a parallel of latitude as early as

1000 B.Co, Dicaearcus (326 - 296 B.C.), about seven hundred years

later, was the first to draw a parallel across a map, dividing the world

into a northern and southern half.
^

Eratosthenes (276 - 196 B.C.) of Cyrene was appointed

^Brown, op. cit . , p. 33.

2"Maps, " op. cit . , p, 634.

3David Eugene Smith, History of Mathematics (Boston: Ginn and
Company, 1923) Volume I, p. 75.

4„Brown, op. cit . , p. 47,

^"Maps,"qp. cit,, p. 634.
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Librarian of the library at Alexandria by Ptolemy III (Euergetes I)

in 247 B.C. He was the first to measure the size of the earth by a

scientific method. He was informed that at the summer solstice at

Syene in upper Egypt there was no shadow in the bottom of a well at

noon. He knew that on this same day the gnomon on a sundial at

Alexandria indicated, from the length of its shadow, that the sun was

1/50 of the circumference of a circle, or 7° 12', from the zenith.

Assuming that Syene and Alexandria were on the same meridian, he

reasoned that this must be the difference in latitude between the two
\

cities, and hence the circumference of the earth must be fifty times

this distance. It is not known how this distance was measured, but

Eratosthenes gave its value as 5000 stadia. From this he calculated

the circumference of the earth to be 250,000 stadia at the equator, and

the length of a degree along a meridian to be 700 stadia. If a stadium

was 517 feet^, then the error in the circumference of the earth was

less than five hundred miles, and the error in the length of a degree

was less than a mile. 2

J. L. E. Dreyer, History of the Planetary Systems from Thales
to Kepler. (Cambridge: University Press, 1906) p. 174.

2Various authors estimated the length of a stadia differently. It
is known that different lengths of the stadia were used at the same time.
This accounts for the seeming discrepancies in the values that follow.
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Since the latitude of Syene is about 24° 05' and that of Alexandria

is about 31° 12', the difference of 7° 7' is a close approximation to

Eratosthenes value of 7° 12'.

At this time the obliquity of the ecliptic was about 23° 43'. Hence

Syene was not on the Tropic of Cancer. The longitude of Syene is

about 3° east of Alexandria.

It would appear, therefore, that a combination of inaccuracies

r

yielded Eratosthenes a very good approximate result.

Eratosthenes was also the author of a treatise on geography.

Only parts of it have survived, one being his map. It was in the form

of a parallelogram 75,800 stadia east and west, by 46,000 stadia north

and south. He drew seven parallels across it and seven meridians

perpendicular to them. The seven parallels were drawn through

Meroe (near the equator)^ Syene, Alexandria, Rhodes, Lysimachia

(on the Hellespont), the mouth of the Borysthenes (i, e. the Dneipper)

and lastly Thule, supposedly the most northern point on the earth.

The seven meridians were drawn through the Pillars of Hercules (i. e.

Gibraltar), Carthage, Alexandria, Thapsacus (on the Euphrates), the

Caspian Gates, the mouth of the Indus, and the mouth of the Ganges.

The positions of all of these places were supposed to have been accu-

rately determineid by competent authorities. ^

^"Maps, " op. cit . , p. 635.
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Hipparchus (c. 150 B,C,) objected to this arbitrary network and

suggested that the parallels and meridians should be drawn at regular

intervals, and that maps should be based upon a regular projection,

Hipparchus drew several star maps making use of his suggested pro-

jections, but he is not known to have drawn a land map. ^ He developed

the spherical trigonometry that he needed in his work on astronomy

and worked out a table of chords. He also used a stereographic pro-

jection of the celestial sphere on the plane of the earth and compiled

a catalogue of 850 fixed stars. Hipparchus was the first to suggest

that longitude could be determined by observations of eclipses, ^

Crates of Mallus (c. 150 B,C.) produced a globe on which he

divided the earth into four quarters, each of which was inhabited,

thereby unconsciously anticipating the discovery of North and South

4America and Australia.

Posidonius (130 - 50 B.C.) who was head of the Stoic school at

Rhodes, using the arc from Rhodes to Alexandria as a base, deter-

mined by observations on the star Canopus the circumference of the

^"Maps, " op, cit , , p. 635.

2
Smith, op. cit . , I, 119; II, 605.

3
"Maps, " op. cit . , p. 635.

4
Ibid.

, p. 635.
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earth to be 240,000 stadia, thereby establishing the length of a degree

as 666 2/3 stadia. ^ It is possible that Posidonius, realizing the

inaccuracy of his instrunments, may have been responsible for reduc-

ing the value of the length of a degree to 500 stadia. This value per-

sisted for centuries, and may have influenced Columbus, for it made

the circumference of the earth about 17,000 mUes, thus placing India

much nearer to Europe than it actually is. ^ Posidonius also noticed

the difference between spring and neap tides and suggested that the sun

as well as the moon was responsible.^

The first general treatise on geography was written by Strabo

(c. 40 B.C.). It is not known when he produced his work, but it is

known that it was revised sometime between the years 17 and 23 A.D.

It was divided into four main divisions; mathematical, physical, poli-

tical, and historical geography.^

Marinus of Tyre (c. 120 A.D.) used Strabo's geography to pre-

pare his charts on which places were located according to their

Smith, op. cit . , II, 371,

2
"Maps, " op. cit . , p. 636.

2George Sarton, Introduction to the History of Science, '

Baltimore: The Williams and Wilkins Company, 1927), I, 204,

4
"Strabo," Encyclopedia Britannica, Volume XXV, 11th edition.

P. 974.
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latitudes and longitudes. Parallels and meridians were straight lines

perpendicular to each other and equally spaced. ^ This map is extinct,

0

but Claudius Ptolemaeus (c. 150 A. D, ), usually referred to as

Ptolemy, mentions it. From Ptolemy it is learned that Marinus used

the value of 500 stadia for the length of a degree. This, in addition

to his exaggeration of distances, produced large errors in longitude.

His prime meridian was through the "Fortunatae Insulae", that is,

the Azores. 2 For many centuries this vicinity was chosen for the

prime meridian for it was believed that no land lay to the west of those

islands. ^

Ptolemy produced the Cosmographia in which he drew a world

map as well as several sectional maps. He used three projections,

one in which the parallels were curved and the meridians straight, one

in which both parallels and meridians were curved, and one in which

both were straight. His greatest work. The Almagest
, contained a

summary of the work of Eratosthenes, Posidonius, and others, con-

cerning the size of the earth, the location of certain places, and the • ^—
I

^ Ibid, p. 974.

^Smith, op. cit . , I, 130.

^Brown, op. cit.
, p. 282.
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size of islands and countries. He extended Hipparchus' table of

chords^ and increased the latter's star tables to include 1022 fixed

stars. He accepted the value of 500 stadia as the length of a degree.

It was in the Almagest that he propounded his famous geo-centric

theory known as the Ptolmaic System, a theory that was to influence

science until the time of Copernicus in the sixteenth century.^

In the Ptolmaic System all the apparent motions of the planets,

the sun, and the moon, so far as was then observed, could be

accounted for by supposing that a stationary earth was at the center

of the system and that each planet moved around the circumference of

a circle (the epicycle) while the center of this circle (the fictitious

planet) moved arouhd the earth on the circumference of a larger cir-

cle (the deferent). Figures 1 A and 1 B, on pages 14 and 15, repre-

sent the Ptolmaic System. They are not drawn to scale, the deferents

being placed at equal distances apart. The epicycle radii of Mars,

Jupiter, and Saturn are always parallel to the line joining the earth

and the sun. For both Venus and Mercury, Ptolemy assumed that the

fictitious planet revolved in its deferent completing one revolution

Ptolemy's table of chords is a table giving the lengths of the
chords subtended by central angles in a circle of radius 60.

^Smith, op. cit. , I, 130.
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Figure 1 A
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Figure 1 B
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annually and always in line with the earth and the sun. ^ The follow-

ing shows the period s of revolution in the deferent and in the epicycle

of the moon and the planets according to Ptolemy.

Celestial Period of Revo Period of Revo-
Body lution in the lution in the

Deferent Epicycle

Moon 27 1/3 days 27 1/3 days

Mercury 1 year 116 days

Venus 1 year 584 days

Sun 1 year

Mars 1. 88 years 780 days

Jupiter 11.8 years 390 days

Saturn 29. 5 years 378 days

In order to account for sonne of the irregularities of the planets'

motions, Ptolemy assumed that the deferent and the epicycle were

eccentric

.

After Ptolemy, a stationary condition followed. During this

time science was pursued only by the Arabs who were imitators rather

than original investigators. In the ninth century Albatani (850 - 925),

the greatest Arabian astronomer, obtained a more accurate measure-

ment of the arc of a meridian than had previously been made. He

^Russell, Dugan, and Stewart, op. cit. , 1, 243.
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corrected the values of precession and the obliquity of the ecliptic,

compiled a catalogue of stars, and first used sines and half-chords. ^

Pope Sylvester II (999 - 1063) accepted as a fact that the earth

was a sphere and subscribed to the geo-centric system of the uni-

verse, but the map makers, who for the most part were monks, still

used the older ideas to form their maps. There were three types, the

rectangular, the circular, and the oval. In each the inhabited world

-was surrounded by the ocean.

About 1000 Abul-Wefa used secants, tangents, and cotangents,

and in 1080 Geber introduced the use of the cosine and made some im-

provements in spherical trigonometry, ^

Portolan charts, which were the creations of seamen, naviga-

tors, and others, were the first modern scientific maps. They were

based upon caretful and scientific observations. Most of them pertain

to the Mediterranean and the Atlantic coast to the north and south of

Gibraltar. It is not known when they were first used. The date 1000

A.D, has been suggested, but no portolan chart of that date is known.

In fact, none are known to have been drawn prior to 1300 A.D, The

Charles J. White, The Elements of Theoretical and Descrio
tive Astronomy (New York; John Wiley and So^, Inc., seventh
edition, revised, 1901) p. 251.

'"Maps," op. cit. p. 637.

White, op. cit,
, p. 251.
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oldest bears the date 1311 and the signature of Pietro Visconte. It

is reported that the ships of Louis IX used sea charts in 1270.
^

The Arabs, the Chinese, the Italians, and the Vikings,^ as well

as the Greeks, the Finns, and others, ^ have claimed the honor of in-

venting the mariner's compass, but none have much evidence to

support their claim. Alexander Neckam (c. 1350) in his two treatises

De Utensilibus and De Rerum
, written in the twelfth century, mentions

a needle carried on board ship which if placed on a pivot so that it is

free to turn shows the mariners their course when the pole star is

hidden.

In 1269 Petrus Peregrinus de Maricourt described a practical ^

compass that could be used at sea; and in 1380 Da Buti described one

that had a revolving card with the needle attached to its underside.

This is essentially the form of the compass today, ^

By the year 1400 A. D, the mariner had at his disposal an in- ^

accurate map of the world, a map of the Mediterranean Sea which

^Edward L. Stevenson, Portolan Charts (New York: The
Hispanic Society of America, 1911) p. 2,

^Wroth, op. cit . , p. 23.

"Compass," Encyclopedia Britannica, Volume VI, 11th edition.
p. 808.

^"Compass, " op. cit . , p. 808.

^Wroth, op. cit., p. 24.
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contained gross errors in longitude, but he also had excellent sail-

ing directions, and a fairly good compass for steering whenever land-

marks were not available.



CHAPTER III

FROM 1400 TO 1600

Navigation as a science began to be studied by the Portuguese

about 1400 A.D. Prince Henry, often referred to as "The Naviga-

tor," not only established a school of navigation and astronomy at

Sagres near Cape Vincent, the southwestern corner of Europe, but

he also built an observatory in order that more accurate tables of the

declination of the sun could be obtained. ^ His expeditions discovered

the Azores in 1419, rediscovered Cape Verde Islands in 1447, and

Sierre Leone in 1460.
^

The first mention of a Portuguese observation for latitude was

in 1462 when Diego de Centra used a quadrant to observe the pole star

for this purpose, and about this same time he began to use Ursa Minor

to mark the hours of the night. ^ Nineteen years later, Diogo

d Azambrija used the astrolabe for marine purposes."^

^"Navigation," Encyclopedia Britannica, Volume XVII. 11th
edition, p, 284.

, p. 284.

^Sir Clements R. Markham, "The History of the Gradual Develop-ment of the Groundwork of Geographical Science," The Geographical
Journal, XLVI (19151 o, 174 ^ apnicai

^Ibid.
, p. 176.

20
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Previously, in 1436, a traverse table based upon the trigono-

metric functions had appeared^ and sometime between 1450 and 1461

2
the first almanac was printed.

In 1472 the Sphaera Mundi of Johannes de Sacrobosco was pub-

lished in type. This was a digest of Ptolemy's Almagest abridged

3and translated from the Arabic into Latin about 1230. Two years

later, in 1474, Johann Mueller (1436 - 1476) of Konigsberg, Bavaria,

known as Regiomontanus, published his Tabula Directionum using the

value of 23° 30' for the obliquity of the ecliptic.^

Portuguese sailors determined their latitude by an observation

on the pole star. As their voyages extended south toward and beyond

the equator, it became necessary to obtain another method. For this

purpose a Mathematical Junta or Committee was appointed in 1481 by

King John II who ascended the throne of Portugal that same year.

About this time a Jewish scholar, Abraham Zacuto, who had been a

professor of astronomy at Salamanca, arrived in Portugal. He

Hvroth, op. cit . , p. 32. ^

^"Navigation, " op. cit ., p. 289.

George F. Chambers, A Handbook of Descriptive Astronomy
(Oxford, The Clarendon Press, 1877, third edition) p. 766.

'^Edgar Prestage, The Portuguese Pioneers (London: A. and C.
Black, Ltd,

, 1933) p. 318.
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brought with him a work in Hebrew entitled Almanac Perpetuum .

This work contained tables of the sun's declination, the maximum

value being 23° 33'. Joseph Vizinho, a member of the Committee,

was a friend of Zacuto and, having obtained his almanac, translated it

into Latin. ^ It was used in manuscript form until 1496 when it ap-

peared in print. 2 This Committee suggested the method of measur-

ing the altitude of the sun to determine the latitude when near or below

the equator, and also suggested that a simplified form of the astrolabe

be designed for this purpose. Such a form of metal or wood, or a

combination of metal and wood, must have been produced shortly

thereafter, for it is known that these simplified astrolabes were used

to determine latitude some years before Columbus sailed on his first

voyage to America. 3

Thus, in 1492, Columbus had available for navigation purposes;

a) the Mariner's compass, b) a pair of dividers, c) a quadrant, d) a

lead line, e) a sea chart, f) a ruler,’ g) a traverse table, h) an ordi-

nary multiplication table, and i) an astrolabe which he was not able to
%

4use.

^Markham, op. cit . , p. 30.

^Ibid.
, p. 25.

^Wroth, op. cit . , p. 25.

“^Samuel Morison, Admiral of the Ocean Sea (Boston: Little,
Brown and Company, 1944), p. 194.
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T

The earliest navigation manual, Regimento do Estrolabio y do

Quadrante was printed in Portugal in 1509. It combined in one manual

Sphaera Mundi of Sacrobosco, a table of the sun's declination for

one year based upon Zacuto's almanac, directions for using the tables
V

to determine the latitude by an observation on the sun at meridian

height, a list of places with their latitudes, directions for determin-

ing latitude by the pole star, and a traverse table to be used to deter-

mine the longitude by finding the dead reckoning position. ^

John Werner (I486 - 1528) in his Ptolemy of 1514 describes the

construction and use of the cross-staff and refers to it as an ancient

instrument just beginning to be used for navigational purposes. It was

in this work that he recommended measuring the angular distance be-

tween the moon and certain fixed stars to determine longitude. ^

R. Gemma F risius (1508 - 1555) in his work De Principiis

Astronomiae, published in 1530, proposed the use of the "Lyttle

clocke" to determine the difference in longitude between two places

by transporting the instrument from one place to another and noting

the difference between the local times of the two places. ^ He also

^Wroth, op. cit . , p. 49.

^Ibid.
, p. 26.

3
Wroth, op., cit.

, p, 79.
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proposed that the distance between meridians be measured on the

equator allowing 15° of arc for each hour of time, and that the lati-

tude (i.e. declination) of celestial bodies be measured from the equator

not from the ecliptic, ^ In 1569 Tycho Brahe (1546 - 1601) followed

the last suggestion. ^

It IS not known when the variation of the compass needle was

first recognized. Columbus, in his Journal under date of September 13,

1492, reported a westerly variation. ^ This would seem to imply that

he was familiar with an easterly variation. Francisco Falerios (c.

1535) in his work Tratado del Esphera del Arte del Marear published

in Seville in 1353, proposed that longitude could be determined by the

variation of the compass. To accomplish this he gave complete de-

tails based on the calculations of his brother, Ruy Falerio. This idea,

which later proved to be false, persisted for over a century,'^

Two years later, in 1537, Pedro Nunes (1502 - 1578) published

— Esphera coma Theorica do Sol e jda Lua, probably the

greatest of the early books on navigation. In the third part of this

^"Navigation, " op. cit . , p. 285.

^"-Astronomy, " Encyclopedia Britannica, 11th edition.Volume II, p. 811.
'

^Morrison, op. cit . , p. 203.

^Wroth, op. cit.
, p. 51.
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work he called attention to the errors in plane charts, described great

circle sailing, adopted Regiomonatanus' value of 23° 30' for the ob-

liquity of the ecliptic, and ignored Falerio's method of determining

longitude by the variation of the compass. ^ He realized that the lox-

odrome^ is a spiral thereby paving the way for the cylindrical pro-

jection of Mercator. 3

Nunes also described his method of the division of the quadrant

by concentric circles - the nonius - a precursor of the vernier. The

arc of a large quadrant was furnished with forty-five concentric seg-

ments or scales. The outer one was graduated into ninety divisions,

the next to eighty-nine, followed by those graduated to eighty-eight,

eighty- seven, etc.
, divisions. The edge of a fine pointer attached to

the sights passed among these various divisions, By noting which

one the pointer touched, the observer could determine the angle. For

example, if it touched the fifteenth division on the sixth scale the angle

would be 15/85 of 90®, or 15° 52' 57". Tycho Brahe tried a nonius

but found it too cumbersome to use."^

^ Ibid.
, p . 53.

loxodrome is a curve on a surface that cuts meridians at a
constant angle.

^Prestage, op. cit . , p. 325.

'^A. Wolf, A History of Science Technology, and Philosophy in
the XVI and XVII Centuries, (London: George Allen and Unwin, Ltd.
second edition, 1950) p. T29.
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The famous work of Copernicus (1472 - 1543), De Revolutioni -

bus Orbium Coelestium
, in which he proposed his heliocentric theory,

as opposed to the geo-centric theory of Ptolemy, was published in

1543. ^ In his theory he showed the apparent motions of the planets

could be accounted for just as accurately as in the Ptolmaic System if

the sun was placed at the center, and the planets, including the earth,

revolved about it. Like Ptolemy, he assumed that the orbits were

circular, and found it necessary to have a few small epicycles, ^

In 1551 Erasmus Reinhold published Tabulae Prutenticae, the

first tables based upon the Copernician theory. Meanwhile, Dr,

Pedro de Medina's Arte de Navegar, written in Spanish and published

in 1545, probably the first textbook on navigation, followed Ptolemy

for his astronomy and used Zacuto's value of 23° 33' for the obliquity

of the ecliptic. ^ This was followed in 1551 by Breve Compendio de la

^he ra de la Arte de Navegar written by Martin Cortes. He also

followed Ptolemy and Zacuto.

In 1569 Gerhard Kramer (1512 - 1594), later to be known as

^ Smith, op. cit.
, I, 347.

^Giorgio Abetti, The History of Astronomy,
translator, (New York; Henry Schuman, 1952) p.

Betty B. Abetti,

83.

3
"Navigation, " op. cit . , p. 286,

'^Ibid.
, p. 286.
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Mercator, published his map of the world, the first Mercator pro-

jection, which he constructed graphically. ^ Twenty- six years later

when Captain John Davis published his famous book. The Seamans

Secrets the value of this projection was not yet realized for Davis

writes

. . . yet it cannot bee denyed but Charts for short courses are
to uery good purpose for the Pilots vse, and in long courses
be the distance neuer so farre, if the Pilot returne by the
same course whereby in the first he prosecuted his voyage,
his Chart wil be without errour, as an instrument of very
great commoditie; but if he returne by any other way then by
that which he went forth, the imperfections of the Chart will
then appeare to be very great, especially if the voyage be long,
or that the same be in the North partes of the world, the
farther towards the North, the more imperfect; therefore there
IS no instrument answerable to the Globe or paradoxall Chart,
for all courses and climats whatsoever, by whom all desired
truth is most plentifully manifested , . .

^

Four years later, in 1599, Edward Wright, a professor of

mathematics at Caius College, Cambridge, developed the mathemati-

cal theory of the projection, which he published in his book Certaine

Errors in Navigation Detected and Corrected. ^ In explaining the

construction vVright proceeded somewhat as follows: the secant of

Editor, The Voyages and Works of John Davia

^ 271^^
' (London: The HakTuyt Society, 1880, series number 59)

^"Navigation, " op. cit . p. 288.
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one minute is 10,000,000 which is also the section of one minute of the

meridian from the equator. The section of the second minute of the

meridian from the equator is the sum of the secant of one minute and

the secant of two rndnutes. Since the latter value is 10,000,002, this

sum would be 20,000,002. Then to this add the secant of three min-

utes, which is 10,000,004, obtaining for the sum the value 30,000,006,

thus obtaining the section of the third minute from the equator, and

continue this process to obtain additional values of the sections.

Wright also realized that this was only an approximation. ^

In those days the trigonometric functions were lines in a circle

of given radius, usually 10,000,000 units. The sine of 90° was equal

to the radius and was called the whole sine or the sinus totus.

To aid in finding the latitude at night by an observation on the

pole star, the navigator had an instrument known as the Nocturnal,

first described by Michael Coignet of Antwerp in 1581. It consisted of

two concentric circular plates, the outer about three inches in diame-

ter, and divided into twelve equal parts corresponding to the twelve

months. Each month was divided into groups of five days. The inner

circle was graduated into twenty-four equal parts, corresponding to

the hours of the day, and each of these subdivided into four parts. A

handle was attached to the outer circle in such a way that the middle

^H. S. Carslaw, "The Story of Mercator' s Map." The Mathe-
matical Gazette, XII (January, 1924), p. 1.
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of it corresponded with the day of the month on which the "guards*'

had the same right ascension as the sun. This was accompanied by

tables known as the Regiment of the Pole Star which showed for eight

positions of the "guards" the correction to be applied to the altitude

of the pole star to obtain the latitude of the observer. ^ Two noctur-

nals were used at sea; one adapted to the pole star and the first of the

"guards" of the Little Bear, that is, Kochab, the other to the pole

star and the pointers of the Great Bear, that is Duhbe and Merak. ^

It was also in The Seamans Secrets that Davis described his

backstaff which superseded the cross- staff. To use the astrolabe re-

quired three men, one to hold it vertically, one to sight the celestial

object whose altitude was desired, and a third to read the angle of

elevation. It could not be used to measure other than vertical angles.

The cross-staff required the observer to look in two directions at the

same time - at the celestial object being observed and at the horizon.

As long as the observer was in high latitudes fairly accurate results

were obtained, but for observations near or in the tropics, the obser-

vation of a blazing sun high in the heavens simultaneously with the

horizon was indeed a difficult feat. The Davis backstaff overcame

^"Navigation," op. cit.
, p. 285.

2
"Navigation," Encyclopedia Britannica, edition of 1773,

(London: Printed for Edward and Charles Dilly, in the Poultry.)
MDCCLXXIII,m, 402.
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this difficulty, for the observer had the sun at his back so that a

shadow fell upon a slit through which the horizon was being observed. ^

During the two centuries that elapsed from 1400 to 1600, quad-

rants, astrolabes, cross- staffs, and backstaffs were devised to

measure altitudes; tables based upon a more accurate value of the

obliquity of the ecliptic were published; several works to aid the navi-

gator were produced in Spain and Portugal; and methods of determin-

ing latitude and longitude had been suggested. But the two most out-

standing contributions during this time were the mathematical theory

of the Mercator projection by Wright, and the heliocentric theory by

Copernicus, neither of which were immediately accepted.

Because of gross errors in the terrestrial coordinates of sea-

ports, especially in the values of longitude, those who attempted to use

Mercator charts found upon landfall they were far from their destina-

tion. The projection was discarded and the older methods used until

more accurate values of latitude and longitude were available.

Ptolemy's System remained popular for it put man at the center

of the Universe which he considered his rightful place. Furthermore,

Copernicus could offer no proof for his theory.

A. H. Markham, op. cit . , p, 330.



CHAPTER IV

FROM 1600 TO 1800

Early in the seventeenth century several advances in astronomy

and mathematics were made that proved to be beneficial to navigation.

Johannes Kepler (1571 - 1630) announced his three laws:

I. Elliptical Orbit Law: Each planet moves in an
elliptical orbit, with the sun at one of its foci.

II. Description of Areas Law: The line joining each
planet to the sun sweeps over equal areas in

equal intervals of time.

III. Harmonic Law: The squares of the periods of the

planets are to each other as the cubes of the major
semi-axes of their respective orbits.

The first two were announced in 1609# the third in 1618.
^

In 1610 Galileo (1564 - 1642) discovered four of Jupiter's satel-

lites (lo, Europa, Ganymede, and Callisto). After observing their

occultations he proposed that longitude could be determined from

these phenomena and attempted to construct tables for this purpose. ^

Edmund Gunter (1581 - 1626) published the first tables of the

logarithms of sines and tangents of angles to the base ten, thus making

logarithms available for navigation.

^"Navigation, " op. cit . , p. 289.

2 .

Georgio Abetti, "Galileo, the Astronomer," Popular Astronomy,
Volume LIX, March, 1951, p. 140.

^

31
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Kepler, in 1627, published the Rudolphine tables of the planets

which had been compiled by Tycho Brahe. ^ This was also the year in

which Captain John Smith in his Sea Grammar described a "Bittacle"

as a square box nailed together with wooden pins because iron pins

would attract the compass.^ This appears to be the first recognition

of the deviation of the compass.

Four years later, in 1631, Pierre Vernier (1580 - 1637) in-

vented his device now known as a vernier. About this time Johann

Hevelius (1611 - 1687) invented the slow motion or tangent screw and

William Gascoigne (c. 1650) attached a telescope to a quadrant for

shore use. In 1635 Henry Gellibrand (c. 1650) discovered the annual

variation of the compass. Richard Norwood (1590 - 1675) determined

by observations and measurements in 1637 that the length of a degree

of latitude was 367, 176 English feet, an error of about thirty- six feet

in a mile, or about six-tenths of one per cent too large. ^ This is not

the same Richard Norwood who is credited with the discovery of the

dip of the needle, for this was discovered in 1576, fourteen years

before the second Richard Norwood was born.

A practical method for the determination of longitude was still

^"Navigation, " op. cit , , p. 289.

^Wroth, op. cit . , p. 31.

3
"Navigation," op. cit., p. 289.
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unsolved even though theoretical methods for its determination had

been known for centuries. Hipparchus had suggested the method of

eclipses, ^ John Werner the method of lunars,^ R. Gemma Frisius had

proposed the "Lyttle clocke"^ and Galileo the method of occultations. ^

As early as 1598 King Philip III of Spain offered a reward for a

practical solution of the problem. The governments of Holland,

Venice, and France, as well as private individuals in several different

countries also offered rewards for the same purpose.^ The astrono-

mers and mathematicians thought the method of lunars seemed the

most promising for a practical solution, while the navigators thought

that a suitable chronometer would solve the problem.

About 1659 Christian Huygens (1629 - 1695) designed a marine

clock that was regulated by a small pendulum. Several were built and

used. In 1665 a Major Holmes reported to the Royal Society on the

successful performance of several clocks of this type during a voyage

from St. Thomas to the Cape Verde Islands.^

^ Infra
, p. 10.

^Infra, p. 23.

3lnfra, p. 23.

“

^Infra, p. 31.

^Wroth, op. cit . , p. 77.

^Wolf, op. cit.
, p. 117,
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In 1675 King Charles II of England gave land at Greenwich, which

at that time was a suburb of London, commissioned Sir Christopher

Wren to design an observatory, and on March 6th of that year

appointed John Flamsteed the first Astronomer Royal. The observa-

tory was established for the purpose of obtaining improved tables of

the positions of celestial bodies, especially the moon, and to make them

available at least a year in advance. ^

In April 1686 the Philosophiae Naturalis Principia Mathematica

of Sir Isaac Newton (1642 - 1727) was presented to the Royal Society in

manuscript form. It was finally printed in 1687 by Edmund Halley

(1656 - 1742) at his own expense. Halley did much to popularize

Newton's theories in the scientific world by his research on a comet

which bears his name. Halley was also interested in the solution of

the longitude problem and thought that it could be solved by the varia-

tion of the compass. To that end he urged sailors and travellers to

make observations and report the results to him.

During the years 1698 - 1700 Halley sailed on a scientific expedi-

tion for the sole purpose of gathering additional data. As a result, in

1701, he published the first variation chart. This chart showed the

variation for the Atlantic Ocean only, but the following year he pub-

lished a second chart showing variation all over the world. In both he

^"Navigation, " op. cit.
, p. 289.
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used a Mercator projection. These charts were of no value in deter-

mining longitude, but they did provide mariners with data for steering

any desired course. ^

In the year 1714 the English Parliament passed an Act to provide

a reward for any person or persons who should discover a means of

measuring longitude. A body known as the Board of Longitude was

appointed and was given the power to grant sums of money to assist

experiments and promising inventors. For a method of determining

longitude within 60 geographical miles an award of L 10,000 was

offered; within 40 miles L 15,000; within 30 miles L 20, 000, all to be

tested by a voyage to the West Indies and back. 2

The delay in the solution of the problem was caused primarily

for two reasons; first, there was no precise instrument to measure

angles; second, tables of the moon's position to any degree of accuracy

were not available.

Several instruments had been invented to measure the altitude of

a celestial body but none were satisfactory. Thomas Godfrey (1704 -

1749) of Philadelphia, a glazier by trade, became interested in navi-

gation and attempted to improve the Davis backstaff. In 1730 he

^"Sir Isaac Newton," Encyclopedia Britannica, 11th edition.
Volume XIX, p. 587.

2
Ĉurtiss, op. cit.

, p. 130.
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devised a form of it which he called a mariner's bow. He then

attempted to improve a forestaff which led him eventually to consider

a double reflecting instrument, and in November of that year he com-

pleted a double reflecting quadrant. This instrument was tested at sea

and found to be very exact. ^ During the same year, John Hadley

(1682 - 1744), who was vice-president of the Royal Society, also in-

vented a double reflecting quadrant, and later a double reflecting

sextant, with a spirit level attached.
^

In 1735 John Harrison (1693 - 1776) completed his first chronom-

eter and applied for the longitude prize. He was sent on a voyage to

Lisbon and back to test it. From the encouraging results obtained, the

Board granted him L 500 in order that he might continue his experi-

ments. Three years later he completed his second chronometer which

was similar to the first with some improvements. This was followed

by a third, but it, like the second, was never tested at sea. In 1759

he completed his fourth and finest chronometer. It resembled a watch

about five inches in diameter, with an hour hand, a minute hand and a

sweep second hand. It was tested in 1761 on a voyage to the West

Indies and return. Although this voyage lasted over five months, the

^H. D.
Quadrant, " U.

pp. 1171 ff.~

McGuire, "The American Inventor of the Reflecting
S. Naval Institute Proceedinf|;8 , Volume LXV, 1939,

Sir H. S. Jones, "The Development of Navigation, "
Astronomy, Volume LVI, 1948, p. 265.

Popular
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total error of the chronometer, was less than two minutes.

The Board of Longitude, astounded by the results, refused to

pay the full prize, but did advance Harrison L 2500. Harrison agreed

to another trial which took place two years later. On a seven weeks

trip to Barbados the chronometer gained 38.4 seconds. The Board

still refused to pay unless Harrison would give them the secrets of the

mechanism, and also the previous three chronometers that he had

invented. Harrison at last complied, but he did not receive the full

amount of the award until 1773, three years before his death. ^

Tobias Mayer (1723 - 1762) in Germany had worked out a lunar

theory and had calculated tables which were a great improvement on

previous ones. He sent them to the Admiralty in England in 1755.

They were tested by William Bradley (1693 - 1762) who was the

Astronomer Royal at the time, and found to be accurate, in general,

within one minute of arc. They were not published, however, until

1770.

2

Nevil Maskelyne (1732 - 1811) was sent to St. Helene in 1761 on

an expedition to observe the transit of Venus. On the voyage there

and back he took several observations on the moon. Using Mayer's

Alfred Gelligras, "John Harrison, a Pioneer in Navigation,"
Popular Astronomy

. Volume LIII, 1945, p. 425.

2Sir Harold S. Jones, "The Development of Navigation,"
Popular Astronomy , Volume LVI, 1948, p. 265.
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tables he considered that his observations and calculations would yield

a longitude within about a degree and a half. In 1763 on his return to

England, he published the British Mariner's Guide in which he

explained the method of determining longitude within about a degree by

observing the moon and sun, planet,, or star by Hadley's quadrant.

He suggested the latitude and longitude be computed for every twelve

hours, and the distance from the sun, and from a star on each side

of the moon be calculated for every six hours and published in ad-

vance. ^ This date, 1763, is the one usually associated with the Time

Sight, that is, any observation on a celestial body that yields the

longitude or the time.

In 1765 Maskelyne became the Astronomer Royal. Shortly

thereafter he began organizing the publication of a nautical almanac,

and in 1766 the first British Nautical Almanac appeared, Maskelyne

believed that the method of lunar s offered the best solution to the

longitude problem. ^

The lunar method of determining longitude is as follows:

the angular distance from the moon to the sun, planet, or star nearly

in the ecliptic, is measured. This apparent distance is then reduced

to the corresponding geo-centric distance. The rapid movement of the

^"Navigation, ” op. cit . , p. 292.

^Ibid.
, p. 292.
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moon in its orbit is such that the Greenwich Mean Time may be found,

for this distance will be the same only at very nearly the same absolute

time. The difference between the Greenwich Mean Time and the Local

Mean Time yields the observer's longitude. The American Ephemeris

and Nautical Almanac tabulated, until the Ephemeris of 1911, ^ pub-

lished in 1909 , the moon's geocentric distances from the sun, Venus,

Mars, Jupiter, Saturn, and the nine bright stars, Aldebaran, Altair,

Antares, Fomalhaut, Hamal, Markab, Pollux, Regulus, and Spica, at

three hour intervals for every day of the year.^

A formula for the computation of lunar distances may be devel-

oped as follows: in Figure 2, page 40, Z is the observer's zenith,

WABE is the horizon, m and s the observed places of the moon and

sun respectively (in this discussion the sun will be used, but the

results hold for a planet or a star), M and S the true places of the

moon and sun respectively. M is nearer the observer's zenith than

m for the moon's parallax is greater than its refraction, while for the

sun, the refraction is greater than the parallax and consequently s is

nearer the zenith than S. The values of Am, Bs, and ms are obtained

by observation, from which AM and BS are obtained by correcting for

^
American Ephemeris and Nautical Almanac. (Washington-Government Printing Office, 1912) p. iii.

Ephemeris and Nautical Almanac
. (Washington-Government Printing Office, 19 11) pp. xiii if.

®
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Figure 2
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refraction, dip, parallax, and, if necessary, for semi-diameter.

Let ds the apparent distance, ms

D=the true distance, MS

hsthe apparent altitude of the moon, Am

h'sthe apparent altitude of the sun, Bs

Hsthe true altitude of the moon, AM

H'athe true altitude of the sun, BS

Using the cosine law on the triangles Zms (Figure 3, page 42)

and ZMS (Figure 4, page 42)

cos d =co8 (90 - h) cos (90 - h')

4 sin (90 - h) sin (90 - h') cos Z

cos D = cos (90 - H) cos (90 - H')

sin (90 - H) sin (90 - H') cos Z

from which

cos Z « C08 d - 8in h sin h'

cos h cos h'

and

cos 7 ^ D - sin H sin H'
cos H cos H'

Solving these two equations simultaneously a formula for the cosine of

the true distance may be obtained, thus

cos D =.(cos d - sin h sin h')
H cos H*

cos h cos h'

^ sin H sin H'.
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This may be put in the form

cos D = 2 cos 1/2 (hi- h' d) cos 1/2 [(h t h') -

cos H co s H'

cos h cos h'
^ •H')

This IS a formula for the solution of the lunar distance problem.

From it, after subtracting each side from unity and using formulas

for sin 1/2D and cos 1/2D, and extracting the root, Borda's formula

sin 1/2D = cos 1/2 (H + H') cos 4)

is obtained, where

cos^ (j) = 1 - cos 1/2 (h j-h' d) cos 1/2 [(h j- h') - dj

cos h cos h'

Cos H cos H*

cos"^ 1/2 (H + H')

Four observers are necessary for an accurate determination of

longitude by this method; one to measure the distance between the

celestial objects, a second to measure the altitude of the moon, a

third to measure the altitude of the sun, and a fourth to note the time

of the three simultaneous observations.

If four observers were not available, a single observer might

obtain a lunar by using the following sequence: 1) observe the altitude

of the sun, 2) observe the altitude of the moon, 3) measure the angular

distance between the sun and the moon, 4) observe the altitude of the

moon. 5) observe the altitude of the sun. The mean of the altitudes of

the sun and the moon will give the approximate altitudes which the sun

and moon had when the distance was measured.
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The moon moves at the rate of about a degree in arc in two

hours of time, or one minute of arc in two minutes of time. Hence

an error of one minute of arc in observing the distance would make

an error of two minutes in time, or thirty miles of longitude at the

equator.

Even with available tables, the method of lunars require lengthy

calculations. To assist the navigator, to determine his longitude by

Chauvenet's method, ^ fourteen special tables were printed in Bowditch.

The table number, title, and computing formula follow.

Table Title Formula

I Mean Reduced Refraction for Lunars
using a barometer of 30 inches and a
Fahrenheit temperature of 50 degrees

_ r k

cos h sin h

11 Log A, for computing the First Cor-
rection of the Lunar Distance A = (K<)^ sin(h tl/2/1h)

sin h

III Log B, for computing the First Cor-
rection of the Lunar Distance B = K' sin(2H - H)

sin 2H

IV Log C, for computing the First Cor-
rection of the Lunar Distance _ sin(H - AH)

sin H
V Log D, for computing the First Cor-

rection of the Lunar Distance D _ 3in(2h d- /l^)

sin h

VI Second Correction of the Lunar
Distance / Z^,d sin 1" cot d

o
A Manual of Spherical and Practical Astron-.or^, (Philadelphia, J. B. Lippmcott and Company, 5th edition, revisedand corrected, 1863) p. 402 ff.
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Table

VII A

VII B

VIII A

VIII B

IX

X

XI A

XI B

where

Title Formula

For Finding the Correction of the

Lunar Distance for the Contraction
of the Moon's Semi-diameter

_ d 8,

(p - r')^ cos'^h

Contraction of the Moon's Semi-
diameter

For Finding the Correction of the

Lunar Distance for the Contraction of

the Sun's Semi-diameter

Contraction of the Sun's Semi-
diameter

Logarithms of Small Arcs in Space
or Time

4s z (A' -h B')^ 1
f

G -
(R' - P)^ cos^H

A So

JS = (C + D')2 F
G

The logarithms of

the arc in seconds

The Correction Required on account
of Second Differences of the Moon's
Motion

For Finding the Value of N for

Correction for the Compression of
the Earth for the Moon - i, e. the First
Part of N

t(180”^ - t) A Q
2.60576

ai-N'p'sin </ cot d

For Finding the Value of N for Cor-
rection for the Compression of the
Earth for any other body - i. e. the

Second Part of N

b- N'p’sinA cosec d

A' r A(p - r') sin h cot d

B' = -B(p - r') sinH cosec D

C' = -C(R' - P) sin H cot d

D'= D(R' - P) sin h cosec d

d = the apparent distance of the moon from the sun
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^ s the moon's declination

A = the sun's declination

d = A' ^ B' f C f D'

^2 d ='1/2 A jd^sin 1" cot d

ah - the difference of the sun's apparent and true altitudes

Ah- the difference between the moon's apparent and true

altitudes

A Q r the increase in 3 hours of time of proportional logarithms
of the difference of the distances given in the Ephemeris

AS: the contraction of the inclined semi-diameter of the sun

A Se = the contraction of the vertical semi-diameter of the sun

As: the contraction of the moon's semi-diameter

A the contraction of the moon's vertical semi-diameter

F = 1/200 (an arbitrary factor chosen to give G convenient
integral values)

f = 18, 000,000 (an arbitrary factor chosen to give g convenient
integral values)

H = the sun's apparent altitude

h = the moon's apparent altitude

K' = 1, 00029

N'r . 006686

P = the sun's reduced parallax

p :: the moon's reduced parallax

p' - 57' 30" (the assumed mean value of the moon's horizontal
parallax)
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R' » the sun's reduced refraction *

r'« the moon's reduced refraction

t z. the time in minutes

In addition to these fourteen special tables, six other tables are

needed. In the 1901 edition of Bowditch they were numbered 14

(correction for dip), 18 (correction for the moon's semi-diameter and

augmentation), 19 (correction for the moon's horizontal parallax), 21

(correction for mean refraction used in table I), 22(correction for

mean temperature used in table I), and 44 (logarithms for trigonome-

tric functions).

The following data are required:

1. Latitude and approximate longitude of the observer.

2. Approximate local time,

3. Greenwich Mean Time of the observation.

4. Apparent distance of the moon's bright limb from a
star or planet, or from the nearer limb of the sun.

5. Apparent altitude of the moon's upper or lower limb
above the horizon.

6. Apparent altitude of a star, planet, or lower limb of
the sun above the horizon.

7. Barometric pressure in inches of mercury.

8. Temperature in degrees Fahrenheit.

9. Height of eye above sea level.

The index correction of the sextant.10 .
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The computation consists of three parts.

Part I. Preparation of the Data.

1. Enter the Nautical Almanac with the Greenwich
date and take out the moon's semi-diameter and
horizontal parallax; if the sun has been observed,
take its semi-diameter; if a planet, take only its

parallax.

2. Correct the altitude of the moon for dip (table

14), semi-diameter, and augmentation (table

18). Label this the moon's apparent altitude.

3. Correct the altitude of the sun (planet or star) for
dip (table 14), and for semi-diameter in the case
of the sun. Label this the sun's apparent altitude.

4. Correct the apparent distance for the moon's
augmented semi-diameter and the sun's semi-
diameter. Label this the apparent distance.

5. Correct the moon's horizontal parallax (table 19).

Label this the moon's reduced parallax.

6. Enter table I with the moon's apparent altitude
obtaining the correction for mean refraction
and temperature and correct this value for
barometric pressure (table 21) and for the
temperature (table 22). Label this the moon's
reduced refraction.

7. Subtract the result of 6 from that of 5. Label
this the moon's reduced parallax and refraction.

8. Enter table I with the sun's apparent altitude ob-
taining the correction of mean refraction and
temperature and correct this value for barometric
pressure (table 2 1) and for the temperature (table
22). Label this the sun's reduced parallaix and
refraction.

This completes Part I.



II. Computation of the True Distance.

Using tables II, III, IV, and V, take out the

logarithms of A, B, C, and D, and place each
at the head of a column marked accordingly.

From table IX find the logarithm of the moon's
reduced parallax and refraction and put it in

column A and in column B.

From table DC find the logarithm of the sun's

reduced parallax and refraction and enter it in

column C and in column D.

Find the log sin moon's apparent altitude (table

44) and put it in column A and in column D.

Find the log sin sun's apparent altitude (table

44) and put it in column B and in column C.

Find the log cot apparent distance (table 44) and
put it in column A and in column C,

Find the log cosec apparent distance and put it

in column B and in column D.

The sum of the quantities in column A is the

logarithm of the First Part of the Moon's Cor-
rection. Enter table IX with this value and find
its anti-logarithm.

The sum of the quantities in column B is the
logarithm of the Second Part of the Moon's Cor-
rection. Enter table IX with this value and find
its anti-logarithm.

The sum of the quantities in column C is the First
Part of the Sun's Correction. Enter table IX with
this value and find its anti-logarithm.

The sum of the quantities in column D is the
logarithm of the Second Part of the Sun's Correc-
tion. Enter table IX with this value and find its

anti-logarithm.
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12. Combine the results of steps 7 and 8 to obtain
the Moon's Whole Correction.

13. Combine the results of steps 9 and 10 to obtain
the Sun's Whole Correction,

14. Combine the results obtained in steps 12 and
1 3 to obtain the First Correction of Distance,

15. Enter table VI with the result obtained in step 13
and the apparent distance as arguments and find
the Second Correction of Distance.

16 Enter table VII A with the moon's apparent alti-
tude and the moon's Reduction in Parallax and
Refraction and take out the number found.

With this value and the moon's Whole Correction
enter table VII B and take out the contraction which
is to be applied to the apparent distance.

18. Enter table VIII A with the sun's apparent altitude
and the sun's Reduced Parallax and Refraction and
take out the number found.

19. With this value and the sun's Whole Correction enter
table VIII B and take out the contraction which is
also to be applied to the apparent distance.

20. From the Nautical Almanac take the declinations of
the observed bodies to the nearest degree.

21. Enter table XI A with the declination of the moon and
the apparent distance and take out the First Part of N.

22. Enter table XI A with the declination of the sun and
the apparent distance and take out the Second Part
of N.

23. Combine the results obtained from steps 21 and 22.
Enter table IX and find the logarithm of this number.
This is log N.
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24. Add the logarithm of N and logarithm of the

sine of the latitude to obtain the logarithm of

the required correction for compression.
Find its anti-logarithm from table IX.

The result is the True Distance.

Part III, Computation of Greenwich Mean Time

1. In the Nautical Almanac find the two distances

between which the True Distance falls. Take
out the first of these and its proportional log-

arithm and the Greenwich Time.

2. Find the difference between the Almanac
Distance and the True Distance and to the

logarithm of this difference found in table IX
add the proportional logarithm from the

Nautical Almanac. This is the logarithm of an
interval of time to be added to the hours of

Greenwich time to give approximate Greenwich
time.

3. To find the True Greenwich Mean Time, take

the difference between the two proportional log-

arithms in the Almanac corresponding to the

two distances in step 1, above. With this dif-

ference and the interval of time (table IX) found
in step 2, above, enter table X and take out the

number of seconds. This value applied to the

approximate Greenwich Time gives the True
Greenwich Mean Time.

The navigator is now ready to find his longitude. It is the difference

between True Greenwich Mean Time and Local Mean Time. ^

The determination of longitude by the method of lunars is a

formidable problem. Nevertheless it was used extensively at sea to

^N. Bowditch, The American Practical Navigator , (Washington:
U. S. Navy Hydrographic Office, 1906), p. 288.
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correct the chronometer, and the special tables and the method were

given in Bowditch until the 1912 edition.

At the close of the eighteenth century, the six essentials^ for

successful navigation were available. The mariner had Mercator

charts which were excellent as long as he remained within sixty

degrees of the equator; a fairly reliable compass; a double reflecting

sextant and quadrant; a chronometer; an almanac; and several methods

to determine his position. Improvements in each of these six

essentials were to be expected, and better knowledge of tides, winds,

and currents were needed.

Infra, p. 1 .

I



CHAPTER V

FROM 1800 TO 1900

In 1802 the first edition of The New American Practical Naviga-

tor by Nathaniel Bowditch (1773 - 1838) was published. Some years

previously Bowditch had found over eight thousand errors in the tables

in Moore's Practical Navigator and over two thousand errors in the

tables in the second edition of Maskelyne's Requisite Tables
,
two

books that were used extensively at that time. Bowditch decided there-

fore, not only to publish tables of correct values, but also to collect

into one volume all that would be necessary for a complete system of

practical navigation. ^ The publication was an immediate success and

before his death sold over thirty thousand copies in ten editions.^

In the first edition a method of lunar s was given that was an

improvement over previous approximate methods. All the correc-

tions were additive, thereby eliminating several different cases.

Bowditch also invented another method of correcting the distance and

improved upon a third. With the computing and publishing of several

special tables to be used in determining the longitude by the method of

Nathaniel Bowditch, The New American Practical Navigator
(New York: E & G. W. Blunt, 17th edition, 1847) p. iii.

2"Bowditch" (Washington: U. S. Hydrographic Office, revised
edition of 1938) p. 3.

53
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lunars, Bowditch made a great contribution to navigation.

After the publication of an approximate method of lunar a by

William Chauvenet (1820 - 1870) in the appendix of the American

Ephenieris and Nautical Almanac for the year 1857, no other method

wag used officially by the United States Navy as long as lunar s was

practiced (1912). Chauvenet had published this method about seven

years previously. ^

At the equator a degree of longitude is the same as a degree of

latitude, assuming the earth is a sphere. As the poles are approached,

the distance between corresponding degrees of latitude remains the

same while the distance between corresponding degrees of longitude

decreases. On a Mercator chart the distances between meridians of

equal longitude are constant. To preserve the relations that exist at

different parts of the earth's surface between parallels of latitude and

meridians of longitude, it is necessary to expand the latitudes.

In Figure 5, page 55, O is the center of the earth, assumed to be

a sphere of radius R. A and B are two places located on the same

parallel of radius r. PC and PD are meridians through A and B

respectively. The arc CD along the equator is the difference of longi-

tude between the two meridians.

In a Mercator chart the meridians and parallels form a

^Chauvenet, op. cit . , p. 402.
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Figure 5
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rectangular network. The representation of a spherical surface on a

plane in this manner requires that the distance AB be expanded. From

the figure it is evident that

s — ^ s ^ a sec BOD » the secant of the latitude
AB EB r

The distance between equal units of longitudes is constant, hence the

distance between corresponding units of latitude must be expanded in

proportion to the secant of the latitude.

The length of the arc of a meridian expressed in units chosen to

represent one minute of arc of the equator is defined as the number of

meridional parts
,

^ corresponding to that latitude.

Wright obtained his values from a formula which is essentially^

meridional parts for L° » sec 0°-h sec 1'

i- sec 2' + sec 3'-^. . . -f-sec (L° - 1').

In the early editions of Bowditch, as The New American Practi -

cal Navigator was soon called, the tables of meridional parts were

computed from the formula

m » T(. 0007915704468)

Benjamin Dutton, Navigation and Nautical Astronomy (Annapolis,
Maryland, United States Naval Institute, eighth edition, 1943) p. 8.

^Infra, p. 27.
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where

ms the number of meridional parts of that latitude in

miles

log tangent less radius of 1/2 the latitude plus 45°
taken to seven digits multiplied by 10^.

In present day notation T is 10^ log tan (45° f 1/2 L). Values were

tabulated for every degree and minute from the equator to 83° 59'

to the nearest unit.

For greater accuracy the tables contained in later editions are

based on the Clark Spheroid of 1880. These tables contain the

meridional parts for every degree and minute of latitude from the

equator to 80° tabulated to one decimal place and computed from the

formula^

mS— log tan(45° ^ 1/2L) - a(e^ sin LM
9- 1/3 e"^ sin^L f 1/5 e^ sin^L f ...)

where

m = the number of meridional parts of that latitude in miles

a. - 10800/tt = 3437'. 74677, the equatorial radius

M = .4342925, the modulus of common logarithms

c = 1/293.465, the compression factor

e --[fzc - c^ - 0. 0824846

Since the difference in the two formulas is the second term, the

^"Bowditch, " op. cit . , part II, p. 5.
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values given in the early editions were too large amounting to a

difference of four miles at latitude 10® to a difference of twenty miles

at latitude 60°.

A navigator had at his disposal several methods of determining

his longitude, azimuth, and latitude. The usual practice was to ob-

serve the sun in the morning when on or near the prime vertical

(Time Sight), next to observe the sun when on the meridian (Meridian

altitude) or near the meridian (Reduction to the Meridian), thirdly, to

observe the sun again in the afternoon when on or near the prime

vertical, and lastly, during evening twilight, to observe Polaris if the

position was not too far south.

The observations on or near the prime vertical determine the

longitude of the observer and the azimuth of the body, the others

determine the latitude.

For the morning Time Sight the navigator used the dead reckon-

ing (D.R. ) latitude if he considered it reliable, and computed the

longitude and azimuth. Usually, however, he waited until the noon

latitude was obtained, then worked his traverse backward to obtain

hxs morning latitude. With this value he then computed his morning

longitude and azimuth. From this morning position he worked his trav-

erse forward to obtain his noon position. For the afternoon Time Sight,

he carried forward his noon latitude for the afternoon latitude to use

to compute the afternoon longitude. The evening observation on
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Polaris, if available, gave him a check on his latitude at that time.

The longitude may be computed from the formula

sin^l/2t r: sec L cosec p cos s sin(s - h)

where

t = the meridian angle

L » the latitude of the observer

p = the polar distance of the sun

s = l/Z(h-h L -)- p)

h - the observed altitude

As more and more iron was used in the construction of ships,
^

the necessity of a true bearing to determine the deviation of the com-

pass became increasingly important. The purpose of computing the

azimuth is to obtain the deviation by comparing the azimuth observed

at the time of the sight with the computed azimuth. At least three

methods were available, the Time Azitnuth, the Altitude Azimuth, and

the Time and Altitude Azimuth.

For the Time Azimuth a formula is^

Z = X^Y

where

tan X -z sin D cosec S cot l/2t

tan Y =. cos D sec S cot l/2t

The symbol —
, which is read "on to," in the case of A^B,

means either A i-B, A - B, or B - A, depending upon the circumstances.
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Z ~ the true azimuth

S - 1/2 sum of the polar distance and co-latitude

D - 1/2 difference of polar distance and co-latitude

t •= the hour angle.

For the Altitude Azimuth a formula is

sin^l/2Z = sin (s - L) sin (s - h) sec h sec L.

Another is

cos^l/2Z = cos s cos (s - p) sec h sec L

where

Z = the azimuth

s = 1 /2(h t L +• p)

p - the polar distance

h = the observed altitude

L = the latitude

in both formulas.

For the Time and Altitude Azimuth a formula is

sin Z = sin t cos d sec h, ^

where Z, t, d, and h have the same meaning as above.

If the body is near the prime vertical the observer may be at a

loss to know whether the azimuth is to be measured from the north or

south point of the horizon. However, at sea the approximate azirnuth

is usually known. If in doubt, the altitude on the prime vertical can be

^"Bowditch, " op. cit . , edition of 1906, pp. 110 ff.
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computed by the formula

sin h :z sin d cosec L

where h, d, and L have the usual meaning. Then if the observed alti-

tude is less than the computed altitude, the bearing is on the side of

the elevated pole.
^

Several methods were available to determine latitude. ^ In addi-

tion to the Meridian Altitude, Reduction to the Meridian, and Polaris

methods, the Phi prime Phi double prime was popular and used

extensively.

Since the latitude of the observer is the zenith distance of the

equator, an observation of a celestial body on the meridian, after

applying the usual corrections and allowing for the declination, will

yield the latitude.

The celestial body may not always be available when on the meri-

dian. To overcome this difficulty the method of Reduction to the

Meridian was devised. From the fundamental equation

1) sin h r sin L sin d cos L cos d cos t

using the substitution

2
cos t c 1 - sin 1 /2t

^"Bowditch, " op. cit . , edition of 1906, p. 112.

2William Chauvenet, A Manual of Spherical and Practical Astron -

(Philadelphia: J, B. Lippincott and Company, fifth edition, revised
and corrected, 1863) p. 304.
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equation 1) becomes

sin h = sin L sin d -f cos L cos d

2
- 2 cos L cos d sin l/2t

or

. 2sin h =. cos(L'w d) - 2 cos L cos d sin l/2t.

Since L ^d is equal to 90° - Hq, where is the meridian alti-

tude of the body at some place in the same latitude as the observer at

the same instant when the body's declination is d,

sin h 3 sin h^ - 2 cos L cos d sin^ 1 /2t

and

. 2
sin h^* sin h 2 cos L cos d sin 1 /2t.

From the last equation,

sin h(j - sin h a 2 cos L cos d sin l/2t

or

cos 1 /2(hQ + h) sin 1 /2(h^ - h) •. cos L cos d sin 1 /2t.

Since the difference between h^ and h is small

cos l/2(h^-^ h) 5, cos h^.

Also

cos h^ s- sin d).

The value (h^ - h) = ^ is the Reduction to the Meridian, hence

2
sin l/2a 7cos L cos d sin l/2t cosec (L-N«d).

It is assumed that the body is near the meridian, therefore a and t

are small. As a result •
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sin 112a. ^ 1/2 a" sin 1", where a is expressed in seconds of

arc, and

sin l/2t — 1/2(15 t) sin 1", where t is expressed in seconds of

time.

Therefore

2
a" =112.5 t cos L cos d cosec (L *^d) sin 1".

If the hour angle is expressed in minutes of time, then

a" • 112. 5 (60 t)^ (. 000004848 cos L cos d cosec (L— d))

or

^ 11 ^
1". 96349 t^ cos L cos d

sin (L^ d)

To accomplish the Reduction to the Meridian the formula is

H a h
-f.

at^

where

H a the meridian altitude at the time of the observation

h s the observed altitude

a s. the change in altitude in seconds of arc in one minute

of time from the meridian

t =.the interval from meridian passage.

Bowditch published two tables (tables 26 and 27 in the older edi-

tions, tables 29 and 30 in the later editions) to facilitate the reduction.

The first table (26 or 29) gives values of a for one minute of time com-

puted from the formula
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1".9635 cos L cos d
3lS - I

—

-

sin (L^ d)

derived above. The second table (Z7 or 30) gives values of at^. To

use the tables, enter the first table with the latitude and declination

as arguments to obtain a value for a, then enter the second table with

this value and the number of minutes from meridional passage to

2obtain values of at . If the noon latitude is desired allowance for the

run of the ship must be made.

The altitude of the elevated pole is equal to the latitude of the

observer. At the present time (1953) there is no star close to the south

celestial pole, but Polaris is less than a degree from the north celes-

tial pole. To determine the latitude from an observation on Polaris

requires a correction which depends upon the position of Polaris with

respect to the pole. Tables for this correction are given in the various

almanacs and are based upon the formula

2 2
c s p cos t - l/2p sin t tan h sin 1”

where

c s the correction to be applied to the observed altitude

in seconds of arc

p s the complement of the declination in seconds of arc

t s the hour angle

h a the observed altitude.

In Figure 6, page 65
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Z :: the observer's zenith

P :: the north celestial pole

NS = the observer's horizon

O = the center of the earth

p z the complement of the declination of Polaris

h ^ the observed altitude, angle BOA

A s the position of Polaris at the observed time

L- the latitude, or hi: x, where p

In the law of cosines,

sin h = sin (h - x) cos p f cos (h - x) sin p cos t, if sin (h - x)

and cos (h - x) are expanded in a Taylor series and sin p and cos p in

a Maclaurin series, neglecting powers beyond the fourth, and substi-

tuted in the above formula the result is

X - p cos t - l/2(x^ - 2 px cos t f p2) tan h

-h l/6(x^ - 3px^cos t f3p^x-p\ost)

-+*l/24(x'^ - 4px^ cos t ^ 6 p^x^

- 4 p^x cos t f p^) tan h .

By a series of approximations,

X =• p cos t - 1/2 p^sin^t tan h

or in seconds of arc

X = p cos t - 1/2 p2 sin^t tan h sin 1".

The Phi prime Phi double prime method of determining latitude

is limited to conditions where the body is within three hours of meridian
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passage, not more than 45° from the meridian in azimuth, and with a

declination of at least 3°, If the meridian angle is six hours, or if the

declination is zero, the method cannot be used.

The astronomical triangle projected on the plane of the celestial

horizon is shown in Figure 7, page 68. R is the length of the perpendi-

cular from the body to the observer's meridian, intersecting it at

point A. Phi double prime is the latitude of point A and Phi prime is

the distance from the zenith to Point A.

From Napier's Rules of Circular Parts, the following are

derived:

sin R = cos d sin t

sin d r cos R sin <P"

sin h = cos (^*cos R^

From these may be derived

tan tan d sec t

cos (j) = sin (^" sin h cosec d.

It is evident from the figure that

L c (p"^ q>'

There are four cases:

I. Declination has the same name and is greater than the

latitude, then the latitude is equal to Phi double prime

^"Bowditch, " op. cit . , edition of 1926, p. 143.
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minus Phi prime.

II. Declination has the same name and is less than the

latitude, then the latitude is equal to Phi double prime

plus Phi prime,

III. Declination has the same name as the latitude and t is

greater than six hours, then the latitude is equal to

Phi double prime minus Phi prime.

IV. Declination and latitude have contrary names, then the

latitude is equal to Phi prime minus Phi double prime.

Captain Thomas H. Sumner (c. 1850) sailed from Charleston,

South Carolina, bound for Greenock, Scotland, on November 25, 1837.

After passing longitude 21° west he encountered bad weather and was

not able to obtain an observation on a celestial body for several days.

About midnight, December 17th, his dead reckoning position was about

forty miles off Tuskar Light (Latitude 52° 10' North, Longitude 6° 12'

West) and soundings indicated that he was approaching land. Because

of a wind change, which made the Irish coast a lee shore, he made

several tacks to keep his position until daylight. About 10:00 a. m. on

the morning of December 18th he observed an altitude of the sun

through a break in the clouds.

Using his dead reckoning latitude, which he realized was unre-

liable, he determined his chronometer longitude. This gave him a

position fifteen miles east of his dead reckoning position. He then
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assumed a second latitude ten minutes north of his dead reckoning

position and toward the coast. This calculation gave him a position

twenty- seven miles ENE of the first position. A third latitude was then

assumed ten miles further north which gave him a third position

twenty- seven miles ENE of the second position. Upon plotting these

three positions on his chart he noticed that they were on a straight

line which also passed through Small's Light (Latitude 51° 43' North,

Longitude 5° 40' West).

Captain Sumner realized that the altitude he had observed must

have been the same at all three computed points, and also at Small's

Light, and that his ship must be somewhere on the line through the

four points. He kept the ship on a course of ENE and in less than an

hour Small's Light came into view. Thus he found that his D.R. posi-

tion was eight miles too far south and forty-five miles too far west

with a dangerous coast ahead. ^

Captain Sumner published his method in 1843, but it did not find

immediate favor. The computations were long and tedious, and navi-

gators preferred the Time Sight, Meridian altitude, Polaris combina-

tion.

If two observations are made on two different celestial bodies, or

if a second observation is made on the same celestial body after

^"Bowditch, " op. cit . , edition of 1933, p. 159.

L



71

sufficient time has passed so that the azimuth has changed approxi-

mately thirty degrees, the two lines of position will intersect at a

point called a "fix. "

If a fix is obtained from observations on the same celestial body

it is known as the Double Altitude Method. As Lecky pointed out the

solution when worked out by Sumner's method is a formidable problem

and "the rules at the finish are so complicated as to scare most ordi-

nary seafaring men.

Lecky deplored the drawing of lines on a chart and advised that

"the whole thing be done by calculation from the first to the last.

In lieu of Sumner's method of calculation, he proposed the method

of A. C. Johnson, who had been a Naval Instructor aboard the British

training ship Britannica . Sumner's method requires about 530 figures,

Johnson's about 280, or nearly one-half as many.

That this method is complicated may be seen from Lecky' s ex-

planation of the procedure to follow. Using the D.R. latitude deter-

mine the longitude of the first observation. For the second observa-

tion, correct the first D.R. latitude for the run of the ship and use this

latitude to obtain the second longitude. From an azimuth table find the

S. T. S. Lecky, Wrinkles in Practical Navigation (New York:
D. Van Nostrand Co. , Inc.

, 22nd edition, 1937) p, 504.

^Ibid.
, p. 504.
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bearing of the body for each observation. With the latitude and bear-,

ing enter a special table, called table C (C is the product of the co-

tangent of the azimuth and the secant of the latitude). The two num-

bers obtained are labeled a and b. They are either added or sub-

tracted according to special rules and the result divided into the dif-

ference of the longitudes to obtain the correction for the second lati-

tude. The product of this correction and the value of a gives the

correction to be applied to the first longitude, and the product with the

value of b gives the correction to be applied to the second longitude,

both applied so the two longitudes agree. ^

In' 1853 G. F. Martelli completed tables which were published

twenty years later under the title Tables of Logarithms. ^ There are

five separate tables which enable a navigator to determine his longitude

by an observation on a celestial body. The tables are based on the

formula

2 cos L cos d
cosec (1/2 t) i

—

1/2 cos (L v-d) - sin h

where t, L, d, and h have the usual meaning.

To use the tables the procedure is as follows:

1. Enter Table I with the latitude and take out the number
corresponding.

^Lecky, op. cit . , p. 507.

G. F. Martelli, Tables of Logarithm s (New Orlean
ing Printing Office, 1873)

Lighten-
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2. Enter Table I with the declination and take out the

number corresponding.

3. Enter Table 11 with the sum of the latitude and the

declination if contrary names, with the difference if

the same name, and take out the number.

4. Enter Table 111 with the corrected altitude and take

out the number.

5. Add the numbers obtained in steps 3 and 4.

6. Enter Table IV with the result obtained in step 5 and
add the value thus obtained to those found in steps 1 and 2.

7. With this sum enter Table V and take out the value

of t.
t

Table 1 corresponds to the logarithms of the cosines of angles

from 0° to 90® for every minute to which . 5 has been added and the

4
result multiplied by 10 .

Table 11 corresponds to a table of natural cosines to which .2 has

been added and this result multiplied by 10 . This is marked ••seconds"

and tabulated as ••minutes^' and ••seconds^^ there being 60 ••seconds^' to

each ••minute. •• For example, cos 27® 36^ - ,8862. (. 8862 -f- . 2000)10^

= 1086l^2 or 18^ 06^^. 2. This is the value tabulated in Table 11

corresponding to 27® 36 •.

Table III corresponds to a table of natural sines multiplied by

10^ and marked "seconds. •• This value is then subtracted from 16^

40^^ (i. e. 1000 ••seconds^') and changed to ••minutes^^ and ••seconds. ••

For example 10^ sin 15® 38^ - 10^ (.2^.95) = 269.5. The difference be-

tween this value and 1000 is 730. 5 "seconds^^ or 12' 10l'5, the value
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tabulated in Table III corresponding to 15° 38'. This scheme replaced

subtraction by addition.

If we let cos A r a and cos B = b, the combined results of Tables

II and III are

1000(a t . 2000) f- (1000 - 1000 b)

or

1000(a - b) f 1200.

This means that the number which is used to enter Table IV is

1200 "seconds" or 20 "minutes" too large. Since the majcimum value

in Table II is 20' 00", and in Table III the maximum value 1000" or

16' 40", values in Table IV need only be tabulated to 2200" or 36' 40".

However, additional values are given to complete the page.

The values in Table IV, therefore, are obtained by changing the

values of "minutes" and "seconds" to "seconds," deducting 1200, divid-

ing this result by 2000, and finding the cologarithm of the number ob-

tained. To this cologarithm, Martelli added . 0334. For example,

24' 51" . 1 or 1491". 1 less 1200 divided by 2000 is . 14556. The co-

logarithm of this number plus . 0334 is , 8704, the value tabulated by

Martelli corresponding to 24' 51". 1,

Since Table I is entered twice, once with the latitude and once

with the declination, and since . 0334 is added to the cologarithms of

the denominator, the sum of the three numbers obtained in step 6 is

1. 0334 too large. Consequently the values tabulated in Table V are
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log cosec^ ( l/2t) = 1, 0334. Thus for t = 42°, log cosec^ 21° is 0. 8913.

If 1. 0334 is added the result is 1.9247, the value found in Table V

corresponding to the 42° or 2^ 48°^.

From 1844 to 1861 the United States Observatory and Hydro-

graphic Office was under the direction of Lieut Matthew F. Maury.

During this period much research was done not only in astronomy and

hydrography, but also in marine meteorology. The results were pub-

lished in Maury's Wind and Sailing Charts (1850) and Sailing Directions

(1851). These were forerunners of the present day pilot charts of the

oceans issued by the United States Hydrographic Office and of the

various Sailing Directions .

In 1866 the hydrographic and meteorological branches were sep-

arated from the Naval Observatory and placed under the supervision of

the present Hydrographic Office. In 1906 the meteorological branch

was transferred to the Weather Bureau. ^

Adolphe Laurent Anatole Marq de Blonde de Saint-Hilaire (1833 -

1889), an Admiral of the French Navy, published an article entitled

"Calcul du Point Observ/, Methode des Hauteurs Estimees" in 1875,

m which he described his method of obtaining the altitude difference and

the computed point.

At any given instant of time a celestial body is at the zenith of

^Curtis, op. cit.
, p. 133.
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some location on the surface of the earth. This place may be called

the sub-celestial point. If two observations are made simultaneously

on the same celestial body from two different places, the altitudes

will be the same or will differ. If the altitudes are the same, then the

observers are on the circumference of a circle whose center is the

sub-celestial point and whose great circle radius in nautical miles is

the complement of the observed altitude in minutes of arc. If the alti-

tudes are different, which is usually the case, then the observers are

on the circumferences of two concentric circles whose center is the

sub-celestial point, the one with the greater altitude being the nearer

to the sub-celestial point. These circles are called Circles of Posi-

tion

Saint-Hilaire' s method consists of comparing the observed alti-

tude with the altitude computed from a point near the true position,

called the assumed position. The difference in the altitudes is called

the Intercept . Since the assumed position will usually be within thirty

miles of the true position, the bearings of the body from the two posi-

tions are practically the same.

To detemine the line of position graphically, a line is drawn on

the chart in the direction of the sub-celestial point through the assumed

position. On this line an intercept is layed off according to the desired

direction, toward or away from the sub-celestial point, equal in length

to the difference of the altitudes. The line of position is then drawn
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through this point perpendicular to the azimuth.

Sir William Thomson, later to be Lord Kelvin, a professor of

Natural Philosophy in the University of Glasgow, realized the value of

the Sumner line and the advantage to be gained if the work of the navi-

gator could be reduced. He pointed out that if the solutions of the hour

angle could be tabulated corresponding to all possible values of each of

the three sides of the navigational triangle from 0° to 90°, no calcula-

tions would be necessary and the desired data obtained by inspection.

For accurate navigation each of the three sides would have to be tabu-

lated from every minute of arc. This would require "the solution of

157,464,000,000 triangles, or at the rate of 1000 triangles a day would

take 400,000 years,

As a substitute for this overwhelming task, Thomson tabulated

the solutions of 8100 right spherical triangles which he published.^ His

is the first known method to divide the navigational triangle into two

right triangles by dropping a perpendicular from the celestial body to

the meridian of the observer.

Figure 8, page 78, represents the navigational triangle projected

on the plane of the celestial horizon. SO is perpendicular to PZ, where

^Sir William Thomson, Tables for Facilitating Sumner's Method
at Sea (London: Taylor and Francis, 1876) p. 1.

^Ibid.
, p. 1.
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P

Figure 8
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P is the elevated pole, Z is the zenith, and S is the position of the

celestial body. Values of a ( SO) and b
( PO) are tabulated for every

' degree. Instead of tabulating SP and SZ, Thomson tabulated the com-

plements of these values so as to give the declination and altitude.

They were tabulated in columns headed "Co-hyp. " The values of the

angles opposite SO, that is angle P, the meridian angle, and angle Z,

the azimuth, were tabulated in a column’headed A.
^

There were ten rules to follow, some of which were complicated.

2As an example. Rule VI reads.

Halve the estimated co-latitude. Taking the tables, look
for the number thus found in any of the columns headed "b".
If the estimated co-latitude is an odd number of degrees, look
for the positions midway between the two numbers above and
below the estimated co-latitude. Level with the position so
found, and in any one of the columns headed "Co-hyp", place
the end of one leg of a pair of compasses, and search from
column to column until two numbers are found, both in a
column headed "Co-hyp," given by the end of the other leg at
equal distances below and above the center position, one of
which agrees approximately with the declination and the other
with the altitude. The numbers level with these on the right-
hand side of the contiguous column headed "A" are approxi-
mately the hour angle from the meridian of the ship and the
azimuth; that level with the declination being the hour angle, and
that level with the altitude being the azimuth. The opening be-
tween the legs of the compasses may be varied; it is only
necessary that the same distance be taken above and below the
level of the estimated half co-latitude.

Sir William Thomson, op. cit.
, p. 2.

^Ibid.
, p. 2.
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To get the proper opening for the compasses,

Place the end of one leg of a pair of compasses on the middle
of the O at the top of any one of the columns headed "b”, and
open the legs until the other rests on the number in the same
column equal to the estimated co-latitude. Lift the compasses,
keeping this opening between the legs constant, and place the

points on two numbers in one of the columns headed "Co-hyp. "

Search thus through the "Co-hyp" columns until two numbers are
found, one agreeing approximately with the altitude and the

other with the declination.

In the same year in which his tables appeared, 1876, Sir William

Thomson perfected a new type of dry card compass. It was adopted by

the British Navy and used until 1906 when it was supplanted by a liquid

, 2
type.

The United States Navy had used a liquid type for about ten years,

prior to Thomson's invention. As it was satisfactory they did not

change. In 1813 Francis Crowe had proposed that the compass bowl

be filled with a liquid to damp out oscillations of the needle, but not

until E. S. Ritchie had perfected a float that took most of the weight

off the pivots, in 1862, and W. R. Hammersley invented the expansion

chamber, in 1866, were liquid compasses acceptable.^

The first azimuth tables to be published by the United States

Sir William Thomson, op. cit.
, p, 2.

"Compass," Encyclopedia Britannica, 1952 edition. Volume VI,
page 171.

2"Compass," Encyclopedia Britannica, edition of 1952,
Volume VI, p. 171,
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Hydrographic Office appeared in 1881 under the title Artie Azimuth

Tables (H. O. #66). These tables give the true bearing of the sun and

other celestial bodies within the limits of the ecliptic for integral values

of latitude and declination between 70° and 88°, at intervals of ten

minutes of time. The tables are entered using latitude, declination,

and apparent time as arguments, to find the azimuth.

The following year, 1882, H. O. #71, Azimuths of the Sun, known

as the "Red" Azimuth Tables, was published. These are similar to

H. O. #66. The true bearing of the sun is given at intertals of ten

minutes of time from sunrise to sunset for integral values of latitude

from the equator to 7 1 , and for integral values of declination from 0°

to 23°. These tables are divided into three parts; Part I tabulates

azimuths for latitude 0° and declinations either north or south; Part II

tabulates azimuths for latitudes from 1° to 70° inclusive for declina-

tions of the same name as the latitude; Part III tabulates azimuths for

declinations of contrary name.

The next tables of altitudes to follow those of Thomson were by

F . Souillagouet, published in France in 1891. These were the first to

divide the navigational triangle into two right triangles by dropping a

perpendicular from the zenith to find the altitude. Azimuths are com-

puted from tables based on dropping a perpendicular from the celestial

body as in Thomson's method, but different formulas are used. ^

^F. Souillagouet, Tables du Point Auxiliare (Toulouse. Franrp*
Imprxmerie-Douladoure -"Privat, 1891)
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Several contributions to navigation were naade during the nine-

teenth century, including the publication of a) The New American

Practical Navigator by Nathaniel Bowditch, b) Tables of Logarithms

by G. F. Martelli, c) Maury's Wind and Sailing Charts and Sailing

Directions

,

d) Artie Azimuth Tables (H. O. #66) and Azimuths of the

O. #71).

The splitting of the astronomical triangle into two right triangles

first done for navigation purposes by Sir William Thomson in which the

perpendicular was dropped from the body to the observer's meridian,

and by F. Souillagouet in which the perpendicular was dropped from the

zenith to the hour circle of the body, were also notable contributions.

The outstanding contributions, however, were the discovery of

the Line of Position by Captain Charles Sumner which bears his name,

and the intercept method of locating this line by Admiral Saint-Hilaire.



CHAPTER VI

FROM 1900 TO THE END OF WORLD WAR II

' In 1902 the Hydrographic Office published a third set of azi-

muth tables entitled Azimuths of Celestial Bodies (H. O. #120), the

"Blue Azinnuth Tables." These tables give values of the azimuths of

celestial bodies tabulated at ten minute intervals from 0^ OO”' to 12^^

OO”^ for integral values of declinations from 24° to 70° for latitudes

and declinations of the same name. They are entered with the same

arguments as H. O. #66 and H. O. #71. They may be used if the

latitude and declination are of contrary name by entering with the

supplement of the hour angle. The supplement of the tabulated azi-

muth is then the required true bearing.

These azimuth tables may be used to determine a Line of Posi-

tion, Using an assumed latitude compute the corresponding longitude.

Through this point the line perpendicular to the azimuth as found in the

appropriate table is a Line of Position.

If values other than integral latitudes and declinations are used, a

double interpolation is necessary.

Since the publication of the Thomson and Souillagouet tables

many others have appeared. In general they may be classified

^Infra.
, p. 84.

83



84

according to the purpose and method used. Soule and Collins have

grouped them as

1. Longitude methods using the D.R. Position.

2. Longitude methods using an assumed position.

3. Altitude methods not dividing the triangle.

4. Altitude methods using two right triangles formed

by dropping a perpendicular from the celestial body.

5. Altitude methods using two right triangles formed

by dropping a perpendicular from the zenith.

6. Altitude methods using the D.R. position.

7. Altitudes tabulated from an assumed position.

2
Several of these tables are listed in the Bibliography and in the

3
Chronological Table.

In 1905 the Davis Tables published in England were the first to

tabulate in adjacent columns values of natural haversines and their

logarithms. The cosine-haversine formula

hav z = hav (L-^dj-f- cos L cos d hav t

where

^C. C. Soule and E. B. Collins, "Resume of Navigation Methods. "

(Washington: U. S. Hydrographic Office. Supplement to the Pilot

Chart of the North Atlantic Ocean, 1934)

^Supra, p. 108.

3
Supra.

, p. 100,
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, z = the complement of the computed altitude

L z the latitude of the observer

d =: the declination of the body

t — the meridian angle,

now became very popular. The second term in the formula is computed

by logarithms. The anti-logarithm of this is found in the haversine

table. To this value the natural haversine of (L-^ d) is added and the

value of z is determined from the same table.

With the printing of a similar table in the 1914 edition of Bow-

ditch, the CO sine-haver sine formula was widely used by United States

navigators for many years.

In 1920 the Japanese Hydrographic Office published New Altitude

and Azimuth Tables, Between Latitudes 65°N and 65°S. ,
for the Deter -

mination of the Position Line at Sea, the work of S. Ogura of that office.

The tables for altitude were based on the formula

cosec H = sec N sec (K ^d).

Figure 9, page 86, shows the navigational triangle projected on the

plane of the celestial horizon, where

P z the elevated pole

Z - the zenith of an assumed position

M= the celestial body

N = ZA = the perpendicular from the zenith to the

meridian of the body.

K = the distance AB
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Figure 9
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EQ = the equator

5Table A tabulates values of log sec N multiplied by 10 in a

column designated A, and values of K for integral values of latitude

from 0° to 65° and for integral values of the hour angle.

Table B is a table of log secants and log cosecants multiplied by

10 ^.

These altitude tables were utilized by P. V. H. Weems in his Line

of Position Book published in 1927. ^ Incorporated in these tables is

Rust's Azimuth diagram which was first published by Captain Armistead

Rust of the United States Navy in 1918.^

The second edition published in 1928 extended Ogura's Table A to

include latitudes to 90°. These were computed especially for Mr.

Lincoln Ellsworth and Commander Richard E. Byrd for their contem-

plated polar flights.

A Hydrographic Office publication that has gone through many

editions is Navigation Tables for Mariners and Aviators (H. O. #208)

t>y J. Y. Dreisonstok. The first edition was printed in 1928. Figure

10, page 88, shows the navigational triangle as used in these tables,

projected on the plane of the celestial horizon.

P. V.H. Weems, Line of Position Book
(Annapolis, Maryland,

Weems School of Navigation, fourth edition, 1943) p. HI.

2
Rust, Practical Tables for Navigators and Aviators

(Philadelphia: John E. Hand, 1918).
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P = the elevated pole

Z = the zenith of an assumed position

ZD = the perpendicular from Z to PS

S = the celestial body.

The distance SD is called B, the distance DP is called b, the length of

the perpendicular is called a, and the two angles into which the azimuth

is divided are called Z' and Z" as shown.

In the triangle PZD, from Napier's Rules of Circular Parts,

1. sin a = cos L sin t

2. tan b r cot L cos t

3. cot Z' rr sin L tan t

In the triangle DSZ

4. sin h — cos a cos B

5. cot Z" r sin a cot B

These are transformed into

6. sin h r cos a sin (d f- b)

7. cot Z"«= sin a tan (d j-h)

and inverted to obtain

8. cosec h z sec a cosec (d -j- b)

9. tan z" = cosec a cot (d f b)

Table I and lA give for every degree of latitude from 0° to 90°

and for every degree of local hour angle from 1° to 360° four columns

labeled b, A, C, and Z',
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Column b is the value of side b in degrees, minutes and tenths

found from equation 2.

5Column A is the log sec a multiplied by 10 found from equation 1.

Column C is the log cosec a to three decimal places multiplied

by 10 found from equation 3.

Column Z' is the value of that part of the azimuth indicated in the

figure found from equation 3,

Table II is a table of log cosecants and log cotangents of angles

from 0° to 180° tabulated at intervals of one minute. It contains two

columns labeled B and D.

c
Column B is the log cosecant of angles multiplied by 10 , Oppo-

site B is a number which is the average difference of the logarithms

in that column for one minute.

Column D is the log cotangent of the same angles to three places

3multiplied by 10 . At the top of each page is found the average value

for B and D for that page.

To use the tables, Table I (or lA) is entered using as arguments

the meridian angle obtained by assuming a longitude so that the angle

is integral, and a latitude which is the D.R. latitude assumed to the

nearest degree, to obtain values of b. A, C, and Z'. The value of b is

then combined with the declination of the observed body. With this

quantity Table II is entered, and values of B and D found.

With A “h B enter column B of Table II. The result is the computed
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altitude (equation 8).

With C D enter column D of Table II. The result is Z" (equa-

tion 9).

Z' and Z" are added to obtain the azimuth.

Equally popular is another Hydrographic Office publication, Dead

Reckoning Altitude and Azimuth Tables (H. O. #211) by A. A. Ageton,

published in 1932.

These tables are actually tables of log secants and log cosecants

multiplied by 10^ tabulated for all angles from 0° to 90° at intervals of

thirty seconds. The two columns are designated A and B, A being the

values of the log cosecants, B the value of the log secants.

The altitude and azimuth are computed from the D.R. position.

No interpolation is necessary. The azimuth is easily determined from

the tables, and the solution is short, simple, and uniform under all

conditions.

To accomplish this, Ageton dropped a perpendicular from the

celestial body to the observer's meridian as shown in Figure 11,

page 92.

P s the elevated pole

Z^ the observer's zenith

Sr: the celestial body

R = the length of the perpendicular SX dropped from
the body to the observer's meridian.

t = the meridian angle SPZ
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P

Figure 11
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Z = the azimuth

K r: the distance of the body from the equator

Using Napier's. Rules of Circular Parts and inverting, Ageton

obtained the formulas,

1. cosec R.;: cosec t sec d

2. cosec K= cosec d (1/sec R)

3. cosec H r: sec R sec (K ''L)

4. cosec 2.- cosec R (1/sec H)

Supplements to the Nautical Almanac were issued in 1930 and

1931, listing for the first time, the Greenwich hour angle of the moon.

In 1932 this feature became a part of the regular almanac, and in 1934

the Greenwich hour angles of the sun, moon, Venus, Mars, Jupiter,

Saturn, and fifty-five stars were tabulated.

The first Air Almanac was published by the United States Naval

Observatory for the year 1933. This almanac tabulated the Greenwich

hour angles and the declinations of the sun for every day of the year at

intervals of one hour, for the moon at intervals of ten minutes, of

Venus, Mars, Jupiter, and Saturn for 0^, Greenwich Mean Time,

daily, and for fifty stars and the First Point of Aries for the same

time. An additional 144 stars were listed and their Greenwich hour

angles and declinations were given for 0^ on the first of each month. A

special table for Polaris was also included. The A and B values of

these 194 stars, corresponding to the log cosecants and the log secants
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were given for the convenient use of H, O. #211. Correction tables

to facilitate interpolations were included. This was an experimental

volume, the next appearing in 1941. Since that time the Air Almanac

has been published for each year.

The first volume of the Hydrographic Office publication Tables of

Computed Altitude and Azimuth (H. O. #214) was published in 1936,

This was volume IV covering latitudes from 30° to 39° inclusive.

These tables consist of the tabulated solutions of the navigational

triangle, each volume covering ten degrees of latitude.

The tables are entered with the nearest integral degree of latitude,

nearest integral or one-half degree of declination, and nearest integral

degree of meridian angle to find values of the altitude to the nearest

tenth of a minute and the azimuth to the nearest tenth of a degree. The

altitude is corrected for the difference between the tabulated declina-

tion and the true declination to the nearest minute. To accomplish this,

values of a quantity called "delta d" are tabulated adjacent to each alti-

tude. This value is the cosine of the position angle. No correction

need be made to the tabulated azimuth. A value of "delta t" is also

given. This enables a navigator to work from his D.R. position by cor-

recting for the difference between the tabulated hour angle and that from

the D.R. position. An additional correction for the difference in lati-

tude must also be applied.

During World War II a British Publication was electrotyped and
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issued in this country as H. O. #218. This is similar to H. O. #214.

It was devised primarily for air navigation. Tabulated values of alti-

tude and azimuth are given to the nearest minute and degree respec-

tively. This publication consists of thirteen volumes, each covering

five degrees. The complete range is from S. 64° to N. 64°. The main

difference between these two tabulated solutions is that H. O. #218

contains the tabulated altitude and azimuth for twenty-two selected

stars, computed for the epoch of 1940. A second part contains the

tabulated solutions for all integral values of declinations from 0° to

28° thus enabling the tables to be used for the sun, moon, planets, and

other stars within the ecliptic limits, A refraction correction at 5000

feet is included in the tabulated altitudes.



CHAPTER VII

CONCLUSION

Through the centuries navigation advanced very slowly. The

Phoenicians developed it as an art and for over two thousand years an

art it remained. Not until the fifteenth century, under the leadership

of Prince Henry, of Portugal, did it become a science.

Improvements in instruments and methods were slow in develop-

ing, and in many instances several years were to pass before these

improvements or new devices were accepted.

Mercator's chart was found wanting until accurate positions were

obtained. The heliocentric theory of Copernicus had to wait nearly one

hundred years before it displaced the geo-centric theory of Ptolemy.

However, in the field of navigation, the Ptolmaic postulate of a sta-

tionary world with the celestial system revolving about it is still

utilized.

The theory that longitude could be determined from the variation

of the compass was held for over one hundred years before it was

finally discarded as false.

The method of lunars, suggested by John Werner in 1514, pro-

moted by Maskelyne two hundred fifty years later, continued to be

practiced until the early part of the twentieth century. Chronometers

were available and reliable, but were very expensive. Lunars did not

96
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become obsolete until a time check from shore could be obtained by

wireless telegraph, about 1910. The 1912 edition of Bowditch was the

first to omit the lunar method, but for several years it had appeared

as Appendix IV.

Saint-Hilaire' s intercept method, first published in 1875, was

slow to be adopted. At the United States Naval Academy the first

mention in text books used there was in 1906, ^ but instruction in the

older methods continued until after 1930.
^

As late as 1944 the older methods persisted. The Secant Time

Sight Tables by Adeems were published in that year. During \Vorld

War II Commander Weems became convinced that nearly one-quarter

of the Merchant Marine navigators would continue to use the time sight

method due to "tradition, aversion to plotting, influence of examiners,

and to other causes.

In 1947 the United States Hydrographic Office published a new set

of tables under the title Star Tables for Air Navigation
, H. O. #249.

These tables were conceived and designed by Commander C. H. Hut-

chins of the United States Navy, while on duty at the Navigation School

^W. A. Mason, "Marq Saint-Hilaire, Father of the New Naviga-
tion," U. S. Naval Institute Proceedings, Volume LXV, 1939, p. 1175.

^Ibid.
, p. 1176.

Weems, The Secant Time Sight
, (Annapolis, Mary-

land: Weems' System of Navigation, 1944) p. 14.
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at Pensacola in 1941. They are described in the Proceedings of the

United States Naval Institute in the August 1942 issue. ^ One volume,

about the size of H. O. #214 contains all integral values of latitude

from pole to pole. Six selected stars are listed horizontally, arranged

in order of ascending azimuth, with their computed altitudes and true

azimuths for each integral value of the local hour angle of the First

Point of Aries, except from latitude 70° to the poles, in which case the

tabulation is for 2° intervals. The stars were selected on a basis of

magnitude, altitude and azimuth. All of the first magnitude stars ex-

cept Beta Crucis are used, together with nineteen additional stars of

second magnitude. For the complete tables a total of thirty-eight stars

were used. The tabulated altitudes contain a correction for refraction

at 5000 feet. There are seven supplementary tables.

The star tables are entered with an integral value of local hour

angle of Aries (an even value if the latitude is greater than 69°) and a

latitude of integral value nearest the D.R. position, to obtain the

computed altitude and azimuth.

This was followed in 1951 by another edition in three volumes

under the title Sight Reduction Tables for Air Navigation. Volume I

is similar to the preliminary edition, but is computed for the epoch of

1955, Volumes II and III cover latitudes from 0° to 39° and from 40°

to 89° respectively, for declinations from 0° to 29°, and are therefore

^C. H. Hutchins, USNIP, Volume LXIII, p. 1279.
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designed to be used for the sun, moon, planets, and for stars that lie

within the limits of the ecliptic. These three volumes will replace the

thirteen volumes of H. O. #218. Surface vessels, for the most part,

will probably continue to favor H. O. #214. During the last war, sub-

marine navigators found H. O. #218 very useful. H. O. #249 will be

found of equal value.

Other aids and methods devised especially for air navigation have

proved to be useful aboard ships. The American Air Almanac, used

by practically all American air navigators, has been adopted by many

marine navigators.

The magnetic compass and the marine gyro compass lose their

effectiveness as the poles are approached. An electric directional

gyro compass has been developed to be used in these regions. Special

charts have been devised for polar navigation, but are inadequate at the

present time because accurate surveys have yet to be completed.

The history of navigation shows that it is an art based upon

mathematics, astronomy, geography, physics, and the development of

scientific instruments. It has taken many centuries to accomplish the

high state of perfection which has now been reached. In pushing for-

ward the frontiers of navigation, man has learned much about the world

on which he lives.



CHRONOLOGICAL TABLE

Most of the material in the following chronological table has

been selected from similar tables in Smith's History of Mathematics ^

and Chambers' A Handbook of Descriptive Astronomy.^ The more

recent events have been obtained from the original sources.

Date

B.C. Event

c. 3800 Maps were used in Babylon.

c. 3100 Egyptians voyaged on the Mediterranean.

c. 2300 Cadastral surveys made in Egypt.

c. 1500 Phoenicians engaged in trade.

c. 600 Thales of Miletus suggested spherical earth.

Periplus of Sylax probably compiled.

Phoenicians circumnavigated Africa.

c. 550 Anaximander made first known map of the world.

Pythagoras taught the earth is a sphere.

517 Hicataeus wrote the first geography.

500 Parmenides taught the earth is a sphere.

380 Plato taught geometry in Athens.

^Smith, D. C. , op. cit . , Volume I, pp. 549 - 570.

2Chambers, op. cit.
, pp. 762 - 769.
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Date

B.C.

330

300

250

230

225

150

100

25

A.D.

150

710

880

980

1080

1150

1250

Event

Pytheas noticed relation between the tides and the sun and
moon.

Euclid assembled his books of geometry.

Dicaearcus drew the first parallel across a map.

Eratosthenes measured the circumference of the earth.

Aristarchus suggested a spherical earth rotating on its

axis.

Hipparchus discovered precession; used right ascension and
declination and later latitude and longitude; formed first

regular catalogue of stars.

Crates of Mallus divided a globe into four inhabitable
quarters.

Posidonius measured the circumference of the earth.

Strabo wrote the first general treatise on geography.

Ptolemy announced his geo-centric theory.

The Venerable Bede recognized the Establishment of the
Port.

Albatani first used sines and chords,

Abul-Wefa first used secants, tangents, and cotangents.

Geber introduced cosines.

Alexander Neckam described a magnetic needle.

Approximate date of Sacrobosco's Sphaera Mundi.

1252 Isaac ben Sid edited the Alfonsine Tables.
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Date

D. Event

1269 Petrus Perigrinus de Maricourt described a compass.

1380 Da Buti described a compass of the form used in modern
times.

1400 Prince Henry of Portugal became interested in navigation.

1436 First traverse table based upon trigonometric functions
appeared.

1450 Printing from movable type invented.

1455 First almanac printed.

1472 The Sphaera Mundi printed.

1474 Regiomontanus corrected the obliquity of the ecliptic to
23®30'.

1481 King John II of Portugal appointed his Mathematical Junta.

Abraham Zacuto arrived in Portugal with his Almanac
Perpetuum.

1492 Columbus discovered America.

1509 Regiomento do Estrolabio y do Quadrante published.

1514 John W^erner suggested the method of lunars to determine
longitude.

1530 R, Gemma F risius suggested a "Lyttle clocke" to determine
longitude.

1537 Pedro Nunes invented the "nonius."

1543 Copernicus announced his heliocentric theory.

1551 Martin Cortes published text on navigation.

Erasmus Reinhold published first tables based on the theory
of Copernicus.
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Date

A.D.

1569

1578

1581

1590

1595

1598

1599

1609

1610

1614

1615

1618

1620

1625

1627

1631

1633

1635

Event

Gerhard Kramer exhibited his Mercator projection.

Humfray Cole invented the patent log.

Michael Coignet described nocturnals.

Simon Stevin invented decimal fractions.

Captain John Davis published the Seamans Secrets.

King Philip III of Spain offered a reward for the solution of
the problem of the determination of longitude.

Edward Wright developed the mathematical theory of the
Mercator projection.

Kepler announced his first two lawEkr

Galileo discovered four of Jupiter's satellites.

Napier invented logarithms.

Henry Briggs used ten for a base of logarithms.

Kepler announced his third law.

Edmund Gunter published the first tables of logarithms of
sines and tangents.

Addison published Arithmetic Navigation using logarithms.

Kepler published the Rudolphine Tables.

Pierre Vernier invented his device.

Johann Hevelius invented the tangent screw.

Galileo forced to deny the Copernician theory.

Henry Gellibrand discovered annual variation.
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Date

A,D.

1637

1659

1665

1675

1683

1687

1701

1714

1730

1735

1761

1763

1767

1795

1800

1802

1803

Event

Richard Norwood determined the length of a degree of lati-

tude within an error of about six-tenths of one per cent.

Christian Huygens designed a marine clock.

Major Holmes reported success with pendulum watches.

Greenwich observatory built.

Flamsteed compiled tide tables for London Bridge.

Edmund Halley published Newton's Principia .

Edmund Halley published first variation chart.

Board of Longitude appointed in England.

Thomas Godfrey and John Hadley independently invented the
sextant.

John Harrison invented a chronometer.

Harrison perfected chronometer number four.

British Mariner's Guide published.

Date of the Time Sight.

British Nautical Almanac first published.

Neville Maskelyne considered the method of lunars the best
method for the determination of longitude.

British Hydrographic Office established.

Captain Huddart invented the station pointer.

First edition of the American Practical Navigator .

Captain Matthew Flinders demonstrated the deviation of
the compass.



Date

A.D.

1827

1832

1837

1843

1850

1851

1853

1857

1862

1866

1875

1876

1881

1882

1891

105

Event :

Lynn's Horary and Azimuth tables published. ^

First Official British Admiralty Tables, *

i

t

Captain Sumner discovered his Line of Position.

Sumner published his method.

Maury's Wind and Sailing Charts issued.

Maury's Sailing Directions issued.

Martelli completed his tables.

Chauvenet's approximate lunar method printed in the
American Ephemeris and Nautical Almanac.

E. S. Ritchie perfects compass float.

Hydrographic and meteorological brances of the Naval
Observatory placed under supervision of the Hydrographic
Office.

Saint-Hilaire published his method.

Sir William Thomson published his tables, the first to
divide the navigational triangle into two right triangles with
a perpendicular from the celestial body.

Sir William Thomson invented the dry compass.

H. O. #66 published.

First edition of Lecky's Wrinkles in Navigation
published.

H. O. #71 published.

Souillagouet published his tables, the first to drop a per-
pendicular from the zenith.
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Date

A,D. Event

1901 Fuss (German) Tables published by the Russian Hydrographic
Office.

1902 Davis' Tables (English) published.

H, O. # 120 , Blue Azimuth Tables published.

1905 Davis' cosine-haver sine tables published.

1907 Ball's Tables (English) published.

1909 Aquino's Tables published.

H. O. # 127 , Star Identification Tables published.

1912 The method of lunars omitted from H. O. # 9 .

1914 Blackburne's Tables published.

1917 H. O. #200 published.

19 18 Captain Armistead Rust's Tables published. Azimuth found
from an original diagram.

1919 H. O. #201 published.

1920 H. O, #202 , Noon Interval Tables, published.

Ogura's tables published.

1923 H. O. #203 published.

1925 H. O. #204 published.

1927 Weems' Line of Position Tables published.

1928 H. O. #208 (Dreisonstok) published.

Weems' Star Altitude Curves published.
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Date

A.D. Event

1930 H. O. #209 (Pierce) published.

First tabulation of the Greenwich Hour Angle in the Nautical
Almanac.

1931 Gingrich's tables published.

1932 H. O. #211 (Ageton) published.

1933 First American Air Almanac published.

1936 First volume of H. O. #214 published.

1940 British publication A. P. 16 18 issued as H. O. #218.

1943 Weems' New Line of Position Tables published.

1944 Weems' The Secant Time Sight published.

1947 H. O. #249 (Hutchins) Preliminary edition of Star Tables
for Air Navigation issued.

1951 H. O. #249 revised, issued in three volumes.



BIBLIOGRAPHY

BOOKS

Abetti, GiorgiOo The History of Astronomy . New York: Henry
Schuman, 1952.

Bowditch, N. The New American Practical Navigator . New York:
E & G. W. Blunt, 17th edition, 1847.

Brown, Lloyd A. The Story of Maps. Boston: Little, Brown and
Company, 1950.

Cary, Henry (translator). Herodotus. London: George Bell and Sons,
1891.

Chambers, George F. A Handbook of Descriptive Astronomy . 3rd
edition. Oxford: The Clarendon Press, 1877.

Chauvenet, William. A Manual of Spherical and Practical Astronomy.
5th edition, revised and corrected. Philadelphia: J. B. Lippincott
and Company, 1863.

Doolittle, C. L. A Treatise on Practical Astronomy. 4th and revised
edition. New York: John Wiley and Sons, Inc.

Dreyer, J. L. E. History of the Planetary Systems from Thales to

Kepler . Cambridge: The University Press, 1906.

Dutton, Benjamin. Navigation and Nautical Astronomy . 8th edition.

Annapolis: United States Naval Institute, 1943.

Goldsmith, Oliver. Alexander Reduces Tyre: Later Founds Alexandria.
Volume II. Rossiter Johnson, Editor-in-CKie^, The National Alumni,
1905.

Hughes, A. J. History of Air Navigation. London: George Allen and
Unwin, Ltd.

, 1946.

Hosmer, George L. Navigation. New York: John Wiley and Sons. Inc.
1918.

108



Hyde, Walter W. Ancient Greek Mariners. New York: Oxford

University Press, 1947.

109

Lamed, J. N. History of the A^orld. Volume I. New York; World

Syndicate Company, Inc., 1915.

Lecky, S. T. S. Wrinkles in Practical Navigation. 22nd edition. New
York: D. Van Nostrand Company, Inc. , 1937,

Markham, A. H. (ed. ). The Voyages and Works of John Davis, the

Navigator. London: The Hakluyt Society, 1880, series number 59.

Morrison, Samuel. Admiral of the Ocean Sea. Boston: Little,Brown

and Company, 1944.

Prestage, Edgar. The Portuguese Pioneers. London: A and C Black,

Ltd., 1933.

Russell, H. N. , Dugan, R. S. , and Stewart, J. Q. Astronomy. 2 vols

Boston: Ginn and Company, 1926.

Sarton, George. Introduction to the History of Science . 3 vols. Balti-

more: The Williams and Wilkins Company, 1927.

Schoff, Wilfred N. (translator). The Periplus of the Erythraean Sea.

New York; Longmans Green and Company, 1912.

Smith, David Eugene. History of Mathematics. 2 vols. Boston: Ginn

and Company, 1923.

Stevenson, Edward L. Portolan Charts. New York; The Hispanic

Society of America, 19H.

Stewart, J. Q. and Pierce, N. L. Marine and Air Navigation. Boston:

Ginn and Company, 1944.

Weems, P. V. H. Star Altitude Curves. Annapolis: Weems School of

Navigation, 1928.

White, Charles J. The Elements of Theoretical and Descriptive
A stronomy. 7th edition, revised. New York: John Wiley and Sons
Inc,

, 1901.

Wolf, A. A History of Science Technology, and Philosophy in the XVI
and XVII Centuries. London: George Allen and Unwin, Ltd.

, 1950.



Wroth, Lawrence C. The Way of a Ship. Portland, Maine: The

Anthoensen Press, 1937.

no

ARTICLES

Abetti, Giorgio. "Galileo, the Astronomer," Popular Astronomy ,

LIX (1951).

Carslaw, H. S. "The Story of Mercator's Map," The Mathematics

Gazette, XII (1924).

Curtiss, R. A. "An Account of the Rise of Navigation," Annual Report

of the Smithsonian Institute (1918).

Encyclopedia Britannica. 11th ed. Volume II. Article, "Astronomy."

. 11th ed. Volume III. Article, "Compass."

. 1952 ed. Volume VI. Article, "Compass."

. 11th ed. Volume XVII. Article "Maps."

. 1773 ed. Volume III, Article, "Navigation."

. 11th ed. Volume XVII. Article, "Navigation."

.
11th ed. Volume XIX. Article, "Sir Isaac Newton."

. 11th ed. Volume XXV. Article, "Strabo."

Franklin, Fred. "Methods Used in Celestial Navigation. " Supplement
to the Pilot Chart of North America for February, 1948. Washing-
ton: Government Printing Office.

Gelligras, Alfred. "John Harrison, a Pioneer in Navigation. " Popular
Astronomy, LIII(1945).

Jones, H. S. "The Development of Navigation. " Popular Astronomy
LVI(1948).

McGuire, H. D. "The American Inventor of the Reflecting Quadrant,"
United States Naval Institute Proceedings, LXV (1939).



Ill

Markham, C. R. "The History of the Gradual Development of Geo-

graphical Science," The Geographical Journal ,
XLiVI (1915)o

Mason, W. A. "Marq Saint-Hilaire, Father of the New Navigation, "

United States Naval Institute Proceedings, XLV (1939).

Soule, C. C. and Collins, E. B. Resume of Navigation Methods .

Washington; United States Hydrographic Office. Supplement to the

Pilot Chart of the North Atlantic Ocean, 1934.

UNITED STATES HYDROGRAPHIC OFFICE PUBLICATIONS

Number

(Washington: Government Printing Office)

Title

9 The American Practical Navigator (Bowditch). Edition

of 1901.

9 The American Practical Navigator (Bowditch). Edition

of 1906.

9 The American Practical Navigator (Bowditch). Edition

of 1938.

66 Artie Azimuth Tables (1881).

71 Azimuths of the Sun (1882).

120 Azimuths of Celestial Bodies (1902).

127 Star Identification Tables (1909).

200 Altitude, Azimuth, and Line of Position (1917).

201 Simultaneous Altitudes and Azimuths (1919).

202 Noon Interval Tables (1920).

203 The Sumner Line of Position for Declinations of Celestial

Bodies from 27 degrees north to 27 degrees south (1923).

204 The Sumner Line of Position for Declinations of Celestial

Bodies from 27 degrees to 60 degrees north and south (1925).



112

208 Navigation Tables for Mariners and Aviators (Dreisenstok,

1928 ).

209 Position Tables for Aerial and Surface Navigation (Pierce,

1930),

211 Dead Reckoning Altitude and Azimuth Tables (Ageton, 1932).

214 Tables of Computed Altitude and Azimuth (1936).

218 Astronomical Navigation Tables (1940).

249 Star Tables for Air Navigation, Preliminary Edition
(Hutchins, 1947).

249 Sight Reduction Tables for Air Navigation. 3 vols (1951).

TABLES

Ageton, A. A. Manual of Celestial Navigation. (New York: D, Van
Nostrand Company, Inc.

, 1942,

Bertin, Ch. Tablette de Point Spherique. (Paris: Gauthier Villars
et Cie, 1919).

Davis, P, L. H. Requisite Tables . (London: J. D, Potter, 1905).

Martelli, G. F. Tables of Logarithms, (New Orleans: Lightening
Printing Office, 187 3).

Ogura, S. New Altitude and Azimuth Tables, Between Latitudes 65 N
and 65 S for the Determination of the Position Line at Sea. (Tokyo:
Nippon Yusen Kaisha, 1920),

A. Practical Tables for Navigation and Aviation . (Philadelphia:
John E. Hand, 1918).

~

Smart, W. M. and Shearme, F. N. Position Line Tables (Sine Method).
(London, J. D. Potter, 1922),

" “

Souillagouet, F. Tables du Point Auxiliare, (Toulouse, France:
Imprimerie - Douladoure - Privat, 1891),



113

Thomson, (Lord Kelvin). Tables for Facilitating Sumner's Method
at Sea . (London, Taylor and Francis, 1876).

Weems, P. V. H. Line of Position Book . (Annapolis: Weems School
of Navigation, fourth edition, 1942).

• New Line of Position Tables (Annapolis: Weems School of
Navigation, 1943).

•
The Secant Time Sight. (Annapolis: Weems School of Navi-

gation, 1944).



%
*

BIOGRAPHICAL SKETCH

Walter Priest Morse was born in Berlin, Massachusetts, on

April 2, 1902. He graduated from. Newton, Massachusetts, High

School in 1922 and from the University of Maine in 1926 with the

degree of Bachelor of Arts in Mathematics and Astronomy. He re-

ceived the degree of Master of Arts in Mathematics and Astronomy

from the University of Maine in 1928. During the time he was at

Maine he was Student Instructor (1925 - 6) and Instructor (1926 - 8)

in the Department of Mathematics. In 1928 he became Instructor

in Mathematics at Ricker Junior College, Houlton, Maine, and in

1933 was appointed Dean when that office was created. He attended

summer sessions at the University of Maine in 1928 and 1931, and

Teachers College, Columbia University, in 1935. He served with the

United States Navy from 1942 to 1945. In 1948 when Ricker Junior

College expanded into a four year liberal arts college he became the

Dean of Ricker College. Since February, 1951, he has been pursuing

graduate studies at the University of Florida during which time he has

been Graduate Assistant (1951 - 2) and Instructor (1952 to present) in

the Department of Mathematics. He is a member of the National

Council of Teachers of Mathematics.

114



This dissertation was prepared under the direction of the chair-

man of the candidate's supervisory committee and has been approved

by all members of the committee. It was submitted to the Dean of the

College of Arts and Sciences and to the Graduate Council and was ap-

proved as partial fulfilment of the requirements for the degree of

Doctor of Philosophy.

August 10
, 1953

Dean, Graduate School

Supervisory Committee:

7


