B. KRASAVCEV. "INSTRUMENTS AND METHODS OF NAUTICAL ASTRONOMY", 1972

CHAPTER II

NAVIGATIONAL SEXTANT AND OTHER ANGLE MEASUREMENT INSTRUMENTS, CURRENT SITUATION AND PERSPECTIVS OF DEVELOPEMENT

§3. ERORRS AND CORRECTIONS OF NAVIGATIONAL SEXTANTS. SEXTANT SNO-T

ORIGINAL TEXT:

отсчет угла. Эксцентриситет характеризуется направлением P смещения и e_{MM} величиной смещения, вместо которой применяется угловая величина $\varepsilon'' = \frac{e_{MM}}{R \, \text{arc } \, 1''}$, где R — радиус лимба.

Поправки отсчетов за эксцентриситет можно вычислять по формуле

$$\Delta h_{\vartheta}^{"} = 2\varepsilon^{"} \left[\sin \left(\frac{oc}{2} - P \right) + \sin P \right],$$
 (6)

из которой видно, что поправки возрастают с увеличением угла.

21

TRANSLATION:

The eccentricity can be carracterised by direction P and value e_{MM} of the offset. The last mentioned value can be substituted with angular value

$$e^{\prime\prime} = \frac{e_{MM}}{R \operatorname{arc} 1^{\prime\prime}}$$

where R — radius of the main arc.

Correction caused by eccentricity can be calculated using following formula:

$$\Delta h_{\bullet} = 2\varepsilon' \left[\sin \left(\frac{oc}{2} - P \right) + \sin P \right],$$
 (6)

It can be seen from this that the correction value increases with the angle.