Longitude by Equal Altitudes

Define a timescale $t=\mathrm{CT}-\mathrm{CT}_{\mathrm{LAN}}$ where CT is the time read from the chronometer and $\mathrm{CT}_{\text {LAN }}$ is the time the chronometer would show when the Sun is on the meridian at local apparent noon (LAN). This is the Sun's local hour angle (LHA) expressed in time. Let t_{AM} and t_{PM} be times in the morning and afternoon when the altitude of the Sun is equal. Their average will be denoted by $\bar{t}=\frac{1}{2}\left(t_{\mathrm{PM}}+t_{\mathrm{AM}}\right)$ and their difference by $\Delta t=t_{\mathrm{PM}}-t_{\mathrm{AM}}$ and both are expressed in hours. Hence $t_{\mathrm{AM}}=\bar{t}-\frac{\Delta t}{2}$ and $t_{\mathrm{PM}}=\bar{t}+\frac{\Delta t}{2}$.

Let $\bar{\delta}$ be the Sun's declination at time $t=\bar{t}$ and δ^{\prime} be the rate of change of declination in \%/hour.
If h is the Sun's observed altitude at t_{AM} and t_{PM} then

$$
\begin{aligned}
\sin h=\sin L & \sin \left(\bar{\delta}-\delta^{\prime} \frac{\Delta t}{2}\right)+\cos L \cos \left(\bar{\delta}-\delta^{\prime} \frac{\Delta t}{2} \cdot\right) \cos \left(\bar{t}-\frac{\Delta t}{2}\right) \\
& =\sin L \sin \left(\bar{\delta}+\delta^{\prime} \frac{\Delta t}{2}\right)+\cos L \cos \left(\bar{\delta}+\delta^{\prime} \frac{\Delta t}{2}\right) \cos \left(\bar{t}+\frac{\Delta t}{2}\right)
\end{aligned}
$$

where the arguments of the trigonometric functions are converted to angular measure as necessary.

Performing a series expansion to first order in the small quantities \bar{t} and $\delta^{\prime} \Delta t$ gives

$$
\bar{t}=\frac{\delta^{\prime} \Delta t}{30}\left\{\frac{\tan L}{\sin \frac{\Delta t}{2}}-\frac{\tan \bar{\delta}}{\tan \frac{\Delta t}{2}}\right\}
$$

From the definition of t it follows that at LAN the chronometer reads $\mathrm{CT}_{\mathrm{LAN}}=\overline{\mathrm{CT}}-\bar{t}$ where $\overline{\mathrm{CT}}$ is average of the AM and PM chronometer times. Up to a sign the quantity \bar{t} is traditionally known as the equation of equal altitudes (Admiralty Manual of Navigation 1922, Chapter XIII, P. 204) or noon correction as it is added to the average of the chronometer times to obtain the CT of LAN.

Adding the Equation of Time (EqT) to $\mathrm{CT}_{\mathrm{LAN}}$ gives $\mathrm{CT}_{\mathrm{LMN}}$ the chronometer time at local mean noon. If the chronometer is set to GMT then the observer's longitude, λ, in time is

$$
\lambda=12-\mathrm{CT}_{\mathrm{LMN}}=12-\left(\mathrm{CT}_{\mathrm{LAN}}+\mathrm{EqT}\right)
$$

