Longitude by Equal Altitudes

Robin Stuart, July 2020

Define a timescale $t = \text{CT} - \text{CT}_{\text{LAN}}$ where CT is the time read from the chronometer and CT_{LAN} is the time the chronometer would show when the Sun is on the meridian at local apparent noon (LAN). This is the Sun's local hour angle (LHA) expressed in time. Let t_{AM} and t_{PM} be times in the morning and afternoon when the altitude of the Sun is equal. Their average will be denoted by $\overline{t} = \frac{1}{2} (t_{\text{PM}} + t_{\text{AM}})$ and their difference by $\Delta t = t_{\text{PM}} - t_{\text{AM}}$ and both are $-\Delta t$

expressed in hours. Hence $t_{AM} = \overline{t} - \frac{\Delta t}{2}$ and $t_{PM} = \overline{t} + \frac{\Delta t}{2}$.

Let $\overline{\delta}$ be the Sun's declination at time $t = \overline{t}$ and δ' be the rate of change of declination in °/hour.

If *h* is the Sun's observed altitude at t_{AM} and t_{PM} then

$$\sin h = \sin L \sin\left(\overline{\delta} - \delta' \frac{\Delta t}{2}\right) + \cos L \cos\left(\overline{\delta} - \delta' \frac{\Delta t}{2}\right) \cos\left(\overline{t} - \frac{\Delta t}{2}\right)$$
$$= \sin L \sin\left(\overline{\delta} + \delta' \frac{\Delta t}{2}\right) + \cos L \cos\left(\overline{\delta} + \delta' \frac{\Delta t}{2}\right) \cos\left(\overline{t} + \frac{\Delta t}{2}\right)$$

where the arguments of the trigonometric functions are converted to angular measure as necessary.

Performing a series expansion to first order in the small quantities \overline{t} and $\delta \Delta t$ gives

$$\overline{t} = \frac{\delta' \Delta t}{30} \left\{ \frac{\tan L}{\sin \frac{\Delta t}{2}} - \frac{\tan \overline{\delta}}{\tan \frac{\Delta t}{2}} \right\}$$

From the definition of t it follows that at LAN the chronometer reads $CT_{LAN} = \overline{CT} - \overline{t}$ where

CT is average of the AM and PM chronometer times. Up to a sign the quantity \overline{t} is traditionally known as the *equation of equal altitudes* (Admiralty Manual of Navigation 1922, Chapter XIII, P. 204) or *noon correction* as it is added to the average of the chronometer times to obtain the CT of LAN.

Adding the *Equation of Time* (EqT) to CT_{LAN} gives CT_{LMN} the chronometer time at *local mean noon*. If the chronometer is set to GMT then the observer's longitude, λ , in time is

$$\lambda = 12 - CT_{LMN} = 12 - (CT_{LAN} + EqT)$$