
Program moonless.py

Counts number of days in specified period when no Moon visible between

Sunrise and Sunset.

Simplifying assumptions

Sunrise / Sunset is when UL altitude is -0° 50.0'

Moonrise / Moonset is when UL altitude is -0° 34.0'

MSL, HoE 0, Standard T & P

Always for 0° longitude

Latitudes above 50° excluded.

Imports

from datetime import datetime

print ("==============================")

print("Start Run", datetime.now().strftime("%H:%M:%S"))

from skyfield.api import wgs84, load, Angle

from skyfield import almanac

======= Constants

Lat = 45 # Range +50 to -50

Long = 0 # Don't change - no provision for time zones

print("Lat:", Lat, "Long:", Long)

StartScanDateYear = 2006 # Earliest 1900

StartScanDateMonth = 3 # 1 - 12

StartScanDateDay = 22 # Avoid > 28 in Feb, etc

EndScanDateYear = 2024 # Latest 2053

EndScanDateMonth = 10 # 1 - 12

EndScanDateDay = 9 # Avoid > 28 in Feb, etc

ShowDetails = False # Only set True if period less than (say) 3

months

2006/03/22 was start of present 18 year cycle

2024/10/09 will be end of present 18 year cycle

====== Globals

MoonlessByDayCount = 0 # Count of days when no Moon visible between

Sunrise and Sunset

======= Skyfield preliminaries

ts = load.timescale()

eph = load('de421.bsp')

sun = eph['Sun']

moon = eph['Moon']

observer = eph['Earth'] + wgs84.latlon(Lat, Long)

Function to print all rise/set times

def PrintDetails(sr, ss, mr, ms):

 if ShowDetails: # flag to only show with very short scans

 print("Sunrise ", sr.utc_iso(' '))

 print("Sunset ", ss.utc_iso(' '))

 print("Moonrise", mr.utc_iso(' '))

 print("Moonset ", ms.utc_iso(' '))

 print()

End function PrintDetails()

Function to analyse specified day (midnight to midnight UT)

def ThisDay(t0, t1):

 global MoonlessByDayCount

 # Get times for this day

 # Sunrise. sr (etc) are UT rise times. sry (etc) are success flags.

 sr, sry = almanac.find_risings(observer, sun, t0, t1)

 # Sunset ss

 ss, ssy = almanac.find_settings(observer, sun, t0, t1)

 # Moonrise mr

 mr, mry = almanac.find_risings(observer, moon, t0, t1)

 # Moonset ms

 ms, msy = almanac.find_settings(observer, moon, t0, t1)

 # Analyse for this day

 # ==== Case 1 ==== No Moonrise detected (but could already be risen)

 # Assumes a Moonset detected. This must be so at Lats lower than 50.

 if (str(mry) == "[]"): # Empty mry array indicates no mr this day

 # No moonrise detected

 if (ms < sr):

 # If Moonset before Sunrise, a Moonless by Day event found

 # Rare, if ever!

 MoonlessByDayCount += 1

 return # Essential

 return # Essential

 # ==== Case 2 ==== No Moonset detected (but could already be set)

 # Assumes a valid Moonrise detected. This must be so at Lats lower than

50.

 if (str(msy) == "[]"): # msy will be empty array if no ms this day

 # No Moonset detected

 if (mr > ss):

 # If Moonrise after Sunset, a Moonless by Day event found

 # Rare, if ever!

 MoonlessByDayCount += 1

 return # Essential

 return # Essential

 # ==== Case 3 ==== Moonrise during daylight

 # Can't be a Moonless by Day event. Just return.

 if (mr > sr and mr < ss):

 return

 # ==== Case 4 ==== Moonset during daylight

 # Can't be a Moonless by Day event. Just return.

 if (ms > sr and ms < ss):

 return

 # ==== Case 5 ==== Moon risen throughout daylight

 # Can't be a Moonless by Day event. Just return.

 if (mr < sr and ms > ss):

 return

 # ==== Case 6 ==== Default

 # If flow reaches here, a Moonless by Day event detected

 MoonlessByDayCount += 1

 PrintDetails(sr, ss, mr, ms)

 return

End function ThisDay()

Main Control Loop for every day in chosen period

if (abs(Lat) > 50):

 print("Lat", Lat, "is out of bounds")

else:

 t0 = ts.ut1(StartScanDateYear, StartScanDateMonth, StartScanDateDay) #

Start of scan day

 t1 = t0 + 1 #

End of this day

 print("First date scanned:", t0.utc_strftime('%Y/%m/%d

%H:%M:%S')) #

Start of Scan

 tEnd = ts.ut1(EndScanDateYear, EndScanDateMonth, EndScanDateDay, 23,

59, 59) # End of Scan

 Days = int(tEnd - t0 + 1)

 while (t1 < tEnd):

 ThisDay(t0, t1) # Analyse each day in turn

 t0 += 1

 t1 = t0 + 1

 print("Last date scanned: ", tEnd.utc_strftime('%Y/%m/%d %H:%M:%S'))

 print(MoonlessByDayCount, "Moonless by Day events detected in period

of", Days, "days.")

 print('{0:.1f}'.format(365/Days * MoonlessByDayCount), "Average

Moonless by Day events per year.")

 print("Average can be misleading for short scans.")

 print("Ideal period is around 18.6 years or multiples thereof. (6780

days)")

print("End Run", datetime.now().strftime('%Y/%m/%d %H:%M:%S'))

print ("==============================")

print()

''' end

python moonless.py

'''

