Program moonless.py

Counts number of days in specified period when no Moon visible between
Sunrise and Sunset.

Simplifying assumptions

Sunrise / Sunset is when UL altitude is -0° 50.0°'

Moonrise / Moonset is when UL altitude is -0° 34.0'

MSL, HoE 0, Standard T & P

Always for 0° longitude

H H H H K K

Latitudes above 50° excluded.

Imports
from datetime import datetime

print (" ")

print("Start Run", datetime.now() .strftime ("$H:%M:%S"))
from skyfield.api import wgs84, load, Angle

from skyfield import almanac

======= Constants
Lat = 45 # Range +50 to -50
Long = 0 # Don't change - no provision for time zones

print("Lat:", Lat, "Long:", Long)

StartScanDateYear = 2006 # Earliest 1900

StartScanDateMonth = 3 #1 - 12

StartScanDateDay = 22 # Avoid > 28 in Feb, etc

EndScanDateYear = 2024 # Latest 2053

EndScanDateMonth = 10 # 1 - 12

EndScanDateDay = 9 # Avoid > 28 in Feb, etc

ShowDetails = False # Only set True if period less than (say) 3
months

2006/03/22 was start of present 18 year cycle
2024/10/09 will be end of present 18 year cycle

====== Globals
MoonlessByDayCount = 0 # Count of days when no Moon visible between

Sunrise and Sunset

======= Skyfield preliminaries

ts = load.timescale()

eph = load('de42l.bsp')

sun = eph|['Sun']

moon = eph['Moon']

observer = eph['Earth'] + wgs84.latlon(Lat, Long)

Function to print all rise/set times
def PrintDetails(sr, ss, mr, ms):
if ShowDetails: # flag to only show with very short scans
print("Sunrise ", sr.utc_iso(' "))
print("Sunset ", ss.utc_iso(' '))

print("Moonrise", mr.utc_iso(' "))
print ("Moonset ", ms.utc_iso(' '))
print()

End function PrintDetails()

Function to analyse specified day (midnight to midnight UT)
def ThisDay(t0, tl1):

50.

global MoonlessByDayCount

Get times for this day

Sunrise. sr (etc) are UT rise times. sry (etc) are success flags.
sr, sry = almanac.find risings(observer, sun, t0, tl)

Sunset ss

ss, ssy = almanac.find settings(observer, sun, t0, tl)

Moonrise mr

mr, mry = almanac.find risings(observer, moon, t0, tl)

Moonset ms

ms, msy = almanac.find settings(observer, moon, t0, tl)

Analyse for this day
==== Case 1 ==== No Moonrise detected (but could already be risen)
Assumes a Moonset detected. This must be so at Lats lower than 50.
if (str(mry) == "[]1"): # Empty mry array indicates no mr this day
No moonrise detected
if (ms < sr):
If Moonset before Sunrise, a Moonless by Day event found
Rare, if ever!
MoonlessByDayCount += 1
return # Essential
return # Essential

==== Case 2 ==== No Moonset detected (but could already be set)
Assumes a valid Moonrise detected. This must be so at Lats lower than

if (str(msy) == "[]"): # msy will be empty array if no ms this day
No Moonset detected
if (mr > ss):
If Moonrise after Sunset, a Moonless by Day event found
Rare, if ever!
MoonlessByDayCount += 1
return # Essential
return # Essential

==== Case 3 ==== Moonrise during daylight
Can't be a Moonless by Day event. Just return.
if (mr > sr and mr < ss):

return

==== Case 4 ==== Moonset during daylight

Can't be a Moonless by Day event. Just return.
if (ms > sr and ms < ss):

return

==== Case 5 ==== Moon risen throughout daylight
Can't be a Moonless by Day event. Just return.
if (mr < sr and ms > ss):

return

==== Case 6 ==== Default
If flow reaches here, a Moonless by Day event detected
MoonlessByDayCount += 1
PrintDetails(sr, ss, mr, ms)
return
End function ThisDay ()

Main Control Loop for every day in chosen period
if (abs(Lat) > 50):

print("Lat", Lat, "is out of bounds")
else:

t0 = ts.utl (StartScanDateYear, StartScanDateMonth, StartScanDateDay) #
Start of scan day

tl = t0 + 1 #
End of this day

print ("First date scanned:", tO.utc_strftime('%Y/%m/%d
$H:%$M:%S")) #
Start of Scan

tEnd = ts.utl (EndScanDateYear, EndScanDateMonth, EndScanDateDay, 23,
59, 59) # End of Scan

Days = int(tEnd - t0 + 1)

while (tl < tEnd):
ThisDay (t0, tl) # Analyse each day in turn
t0 += 1
tl = t0 + 1

print("Last date scanned: ", tEnd.utc_strftime('$Y/%m/%d $H:%M:%S'"))

print (MoonlessByDayCount, "Moonless by Day events detected in period
of", Days, "days.")

print('{0:.1f}'.format(365/Days * MoonlessByDayCount), "Average
Moonless by Day events per year.")

print ("Average can be misleading for short scans.")

print("Ideal period is around 18.6 years or multiples thereof. (6780
days) ")

print ("End Run", datetime.now() .strftime('%Y/%m/%d $H:%M:%S'))
print (" ")

print ()

'''" end

python moonless.py

