Celestial Navigation on the Complex Plane

Robin G. Stuart

Mystic Seaport, Connecticut 5 June, 2010

Stereographic Projection

A straight line drawn from N projects P on the sphere onto z_p on the plane

- Mapping is conformal (angle preserving)
- Circles on the sphere map to circles on the plane
- \succ z_p is generally not the center of the circle on plane

Double Altitude Sight Example

On March 7th,1880 two measurements are made of the Sun's altitude roughly 4 hours apart.

At the first observation

 $GHA_1 = 0^h 59^m 59^s.10$ $\delta_1 = -4^\circ 59' 19''.9$ $ZD_1 = 40^\circ 00' 00''.0$

and at the second observation

 $GHA_2 = 4^{h}59^{m}58^{s}.97$ $\delta_2 = -4^{\circ}55'26''.0$ $ZD_2 = 56^{\circ}43'15''$

- Lecky, S. T. S., *"Wrinkles" in Practical Navigation*, George Philip & Son, Liverpool, 1886; <u>http://books.google.com/books?id=dmbOAAAAMAAJ</u>
- Each observation defines a Circle of Position (COP)
- Observer's position is at one of the intersections
- For a running fix the radius of one of the circles is adjusted

Intersection at Latitude 32°23′ N Longitude 30° W
 Under Mercator projection COP's are not circles

- > z_{p1} and z_{p2} are the geographic positions (GP) of the Sun
- > Centers of the COP's, z_{c1} and z_{c2} , found graphically from circle vertices and GP's

Observer's position can be located by purely graphical methods!

Stereographic Projection

(Aside)

Stereographic projection of spherical triangles produces auxiliary plane triangles

Spherical Trigonometry identities are derived by applying standard identities from Plane Trigonometry

Donnay, J. D. H., *Spherical Trigonometry after the Cesàro Method*, Interscience Publishers, Inc., New York, 1945.

> origins in crystallography

Complex Numbers

Complex number, *z*, consists of a real part *x* and imaginary part *y* $z = x + iy = r(\cos \phi + i \sin \phi) = re^{i\phi}$

where $i = \sqrt{-1}$ and *r*, φ are the modulus, argument of *z*

Re
$$z = x$$
, Im $z = y$, $|z| = r$, arg $(z) = \phi$

Complex conjugate of z is

$$\overline{z} = x - iy = r(\cos\phi - i\sin\phi) = re^{-i\phi}$$

Application to Celestial Navigation uses <u>simple</u> arithmetic of complex numbers

- Built into many scientific calculators
- Native feature of many programming languages; FORTRAN, C++, PERL,...

Functions of complex variables are intimately connected to conformal mapping

- Complex numbers represented as points on a plane or on the Riemann sphere
- Related by stereographic projection

Stereographic Projection of the Globe onto the Complex Plane

Point *P* at latitude *L* and longitude λ then $z_p = tan\left(\frac{\pi}{4} + \frac{L}{2}\right)e^{i\lambda}$ (NP Projection)

or
$$z_p = \tan\left(\frac{\pi}{4} - \frac{L}{2}\right)e^{-i\lambda}$$
 (SP Projection)

Two spherical coordinates *L*, λ carried in a single complex variable

Properties of Circles on the Complex Plane

Two points z and z_p separated by angular distance θ on the sphere satisfy

$$\tan\frac{\theta}{2} \equiv \rho = \left|\frac{z - z_p}{1 + \overline{z}_p z}\right|$$

The set of points z describes a circle with z_p as its pole

On the complex plane that circle will have center, z_c , and radius, r

$$z_{c} = \frac{1+\rho^{2}}{1-\rho^{2}|z_{p}|^{2}} z_{p}, \qquad r = \frac{1+|z_{p}|^{2}}{|1-\rho^{2}|z_{p}|^{2}|}\rho$$

In the case of a Great Circle ρ = 1

$$z_{c} = \frac{2z_{p}}{1 - |z_{p}|^{2}}, \qquad r = \frac{1 + |z_{p}|^{2}}{|1 - |z_{p}|^{2}|}$$

From which it follows $r^2 = |z_c|^2 + 1$

Intersection of Two Circles on the Complex Plane

Double altitude sight requires finding the intersection of 2 circles on the complex plane

Circle with centers at z_{c1} , z_{c2} and radii r_1 , r_2 intersect at

$$z = \frac{1}{2} (z_{c1} + z_{c2}) + (\mu \pm i\nu) (z_{c2} - z_{c1})$$

where

$$d = |z_{c1} - z_{c2}|$$

$$\mu = \frac{r_1^2 - r_2^2}{2d^2}$$

$$v = \frac{1}{2d^2} \sqrt{4r_1^2 d^2 - (d^2 + r_1^2 - r_2^2)^2}$$

$$= \frac{1}{2d^2} \sqrt{(r_1 + r_2 + d)(r_1 - r_2 - d)(-r_1 + r_2 - d)(r_1 + r_2 - d)}$$

Position from Doub	le Altitude S	Si	ght (of	the Su	Jr	<u>1</u>
Sun at 1 st observation							
GHA ₁	0	h	59	m	59.10	s	
Declination, δ_1	-4	0	59	'	19.9	"	
Zenithal Distance, ZD ₁	40	0	00	'	00	"	
Sun at 2 nd observation							
GHA ₂	4	h	59	m	58.97	s	
Declination, δ_2	-4	0	55	'	26.0	"	
Zenithal Distance, ZD ₂	56	0	42	'	15	"	
Z _{p1}	0.8852965062	43	3674-0).2	371520	85	690398i
ρ1	0.363970						
z _{p2}	0.2375470475	55	5908-0).8	862712	02	961888i
ρ ₂	0.539618						
2 z _{c1}	1.1281083633	94	1 66-0.	30	219621	26	55319i
r ₁	0.753556						
z _{c2}	0.4063304631	57	7132-7	1.5	159901	67	36917i
r ₂	1.316722						
d	1.412182						
μ	-0.292317						
V	0.491536						
7	1 5748307911	6/	182-0	an	906113	R1	52821i
2	0.3815832928	36	6668-0).1	995011	09	070274i
Latitude, L	32° 23' 01"						
Longitude, λ	-29° 59' 44"						
Latitude, <i>L</i>	-43° 24' 28"						
Longitude, λ	-27º 36' 06"						

$$z_{p} = \tan\left(\frac{\pi}{4} + \frac{\delta}{2}\right)e^{-i(\text{GHA})}; \quad \rho = \tan\left(\frac{\text{ZD}}{2}\right)$$
$$z_{c} = \frac{1 + \rho^{2}}{1 - \rho^{2}|z_{p}|^{2}}z_{p}; \qquad r = \frac{1 + |z_{p}|^{2}}{|1 - \rho^{2}|z_{p}|^{2}|}\rho$$

$$z = \frac{1}{2} (z_{c1} + z_{c2}) + (\mu \pm i\nu) (z_{c2} - z_{c1})$$

$$L = 2 \tan^{-1} |z| - \frac{\pi}{2}; \quad \lambda = \arg(z)$$

in reference $L = 32^{\circ}23'$ N, $\lambda = 30^{\circ}00'$ W

Rotations on the Complex Plane

If z^* denotes the point diametrically opposite z on the Riemann sphere (antipodal point) then

Can be used to show that the general form of a rotation of the sphere is a bilinear or Möbius transformation

$$T(z) = \frac{az+b}{-\overline{b}z+\overline{a}}$$

Finding the altitude and azimuth of a celestial body amounts to a rotation of a spherical coordinate system

Equatorial Coordinates (GHA, δ) \rightarrow Horizontal Coordinates (Z, h)

For Assumed Position (AP) latitude *L*, longitude λ

$$a = e^{-i\frac{\lambda}{2}}, \qquad b = -\tan\left(\frac{\pi}{4} + \frac{L}{2}\right)e^{i\frac{\lambda}{2}}$$
$$z = \tan\left(\frac{\pi}{4} + \frac{\delta}{2}\right)e^{-i(\text{GHA})}; \quad \mathbf{T}(z) \equiv w = \tan\left(\frac{\pi}{4} - \frac{h}{2}\right)e^{iZ}$$

Coefficients a and b depend only on AP – can be used for multiple objects

Altitude and Azimuth

Find the altitude, *h* and azimuth *Z*, of the star Vega (α Lyræ) at 8 o'clock on 24 October, 1874 from assumed Position (AP) latitude *L* = 30°30′N and longitude λ = 9°30′W.

Saint Hilaire, A. M., *Revue Maritimes et Coloniale*, **Mar-Aout**, 1875, pp.341-375; Vanvaerenbergh, M. and Ifland, P., *Line of Position Navigation*, Unlimited Publishing, Bloomington, Indiana, 2003.

Altitude and	<u>Azimuth</u>					
Assumed Positi	on					
Latitude, L	3	5 °	30.0	'		
Longitude, λ) °	30.0	'		
o S Vega at observ	ation	+		_	_	
GHA	62	2 °	16	' (00	"
Declination, δ	3	3 °	40	' '	13	"
<u>o</u> a	0.9965655	02	49776	1+8	3.28	8082075122044E-002
b	-1.934951	49	010083	8+0	.16	60782070136608i
D Z	0.9684600	94	085827	7-1.	.84	204002255684i
3 0						
$T(z) \equiv w =$	0.1341180	58	69943	5-0	35	573213541146i
(0						
Altitude, h	48° 22' 08	•				
Azimuth, Z	290° 39.4					

Rotations on the Complex Plane

Alternatively can be written

$$T(z_{GP}) = \tan\left(\frac{\pi}{4} - \frac{h}{2}\right)e^{iZ} = e^{-i\lambda}\left(\frac{z_{GP} - z_{AP}}{\overline{z}_{AP}z_{GP} + 1}\right)$$

where z_{AP} is the observer's Assumed Position (AP), $z_{AP} = \tan\left(\frac{\pi}{4} + \frac{L}{2}\right)e^{i\lambda}$

and z_{GP} is the Geographic Position (GP) of the celestial body

For stereographic projection with complex plane tangent at North Pole

$$a = e^{i\left(\frac{\lambda}{2} - \frac{\pi}{2}\right)}, \qquad b = \tan\left(\frac{\pi}{4} + \frac{L}{2}\right)e^{i\left(-\frac{\lambda}{2} + \frac{\pi}{2}\right)}$$
$$z = \tan\left(\frac{\pi}{4} - \frac{\delta}{2}\right)e^{i(\text{GHA})}; \quad T(z_{\text{GP}}) = -e^{i\lambda}\left(\frac{z_{\text{GP}} - z_{\text{AP}}}{\overline{z}_{\text{AP}}z_{\text{GP}} + 1}\right)$$

Poles of a Great Circle defined by 2 points

Let z_1 and z_2 be two points on the complex plane

The poles z_p of the great circle passing z_1 and z_2 satisfy

$$\left|\frac{z_p - z_1}{\overline{z}_p z_1 + 1}\right| = \left|\frac{z_p - z_2}{\overline{z}_p z_2 + 1}\right| = 1$$

Solving for z_p gives

$$z_{p} = i \frac{2 \operatorname{Im}(\overline{z_{1}} z_{2}) \pm |(z_{1} - z_{2})(1 + \overline{z_{1}} z_{2})|}{(1 - |z_{2}|^{2})\overline{z_{1}} - (1 - |z_{1}|^{2})\overline{z_{2}}}$$

- Determination of sextant arc errors simplified if 2 stars can be found at the same azimuth
- Stars will be at the same azimuth when the pole of their great circles is rising or setting

Lord Ellensborough's Method
 Sprigge, J. A., Doak, W. F., Hudson, T. C. & Cox, A. S., Stars and Sextants, J. D. Potter,
 London, 1903 <u>http://www.archive.org/details/starssextants00spri</u>

If z_1 and z_2 represent the poles of 2 great circles then the points z_p are their intersections

24

STARS AND SEXTANTS.

DISTANCES OF THE STAR PAIRS, ETC. R.A. and R.A. and Dec. of Dec. of Star Pair. Distance. Star Pair. Distance. Fictitious Fictitious Star. Star. a Ursæ Minoris. a Eridani-continued. • • • • h m * (Pularis) 11 2410. 5525 8 16 9 268 > Argus ... N. 88 48'. « Argus... 47 50 8 5 1 11 N and :--& Argús. 53 23 58 17 0 21 8 * /.** h 10 44 32 7 5 59 14 N B Argus. 39 25 21 9 20 1 1 a Persei (Mirfak) ... a Leonis (Reynlus) a Tauri (Atdebaran) 119 31 50 15 35 298 73 51 23 10 31 1. a Auriga (Capella) ... 43 20 25 11 14 8 Orionis (Rigel) 97 38 40 11 0 a Crucis. 58 53 11 7 1 5 N 64 52 56 19 1 78 62 39 34 7 6 4N 111 33 18 19 18 38 y Orionis (Bellatriv)....... 83 658 1121 1.8 y Crucis,..... & Crucis a Virginis (Spice) # Tanti (Nath) 60 51 27 11 23 1 N & Centauri.... See juige 40. e Orionis (Almihum) 90 41 34 11 31 13 91 26 39 11 36 1. ζ Orionis α Orionis (Betelguese)...... 82 7 48 11 51 1 N a Scorpii (Antares) 88 53 2 21 47 18 N 49 5 8 8 42 11 8 B Canis Majoris (Mirzana) 107 33 47 12 17 1 N a Trianguli Austmilis 73 27 3 22 11 22 N Scorpii..... @ Scornii ... 67 58 32 22 5 21 N y Geminorum (Alhena) 73 15 2 12 34 e Sagittarii 70 29 11 22 55 26 N a Aquille (Altair) 954115 2 4 31 N a Puvonis 40 6 51 22 57 27 N a Cygui (Deueb) 119 32 10 4 22 25 N a Gruis..... 32 50 58 1 7 32 N a l'iscis Australis (Fomulhaut 39 6 55 3 38 27 N See page 18. See page 18. a Persei. See page 19-(Mirjuk) 34 18m. N. 49" 31'. # Scorpli (Antores) 117 416 2217 18 a Lyrae (1709a 51 34 46 0 30 1 8 16 20 50 10 52 18 N 11 526 1515 40 N 62 49 54 10 57 20 N 50 20 17 11 32 25 N 31 22 45 12 45 33 N (Acherner) 1h 34m. · Orionis (Alailant) 58 21 21 11 28 24 N 8. 57 43'. COrienis. a Orienis (Betelgaene)..... 59 30 7 11 32 25 N and i-52 49 28 12 7 29 N # Canis Majoris (Mirzam) 78 24 18 11 42 26 N a Persei (Mirfak) 109 20 5 8 32 98 y Geminorum (Allhean) 51 10 54 13 22 36 N a Tauri (Ahielarun) 82 29 25 10 2 21 S a Anriga (Copella) B Orionis (Rigel)...... 92 1 55 11 44 27 N 112 49 57 9 47 10 5 e Canis Majoris (ddara) 64 19 43 11 26 28 8 8 Canis Majoris. 90 58 46 12 0 28 N y Orionis (Bellatric) 78 24 8 11 7 27 8 a Geninorum (Castor) 49 0 24 15 32 39 X B Geminorum (Lollus)..... 53 19 24 15 34 19 N B Tauri (Noth)..... 98 20 9 10 26 23 8 y Argus 114 58 10 11 52 27 N « Orionis (Alnilum) 73 4 15 11 32 28 8 a Leonis (liegalas) 87 49 26 16 40 37 N ¢ Orionis ... 50 57 44 7 42 198 59 39 53 8 10 138 -8 40 34 8 26 98 a Orionis (Hetelquese) B Cauis Majoris (Mirtum) y Unas Majoris (Beachasch). a Lyne (Fegu) y Geminorum (Alhena) ... 81 45 4 23 14 23 8 95 55 2 11 50 308 + Canis Majoris (Adara) ... 60 48 52 14 15 31 S a Aquille (Allair) 97 46 18 1 22 37 8 a Canis Majoris, a Guminorum (Castor). 64 10 31 14 9 31 8 a Cygni (Deneb) 62 41 19 0 9 31 8 118 21 28 633 28 5 115 59 0 12 2 298 a Gruis B Geminorum (Pollax) 114 16 44 12 26 31 S a Piscia Australia (Fomalhant) 98 58 20 6 15 31 S Look for the Star with the smaller R.A. in bold type.

STARS AND SEXTANTS.

25

· DISTA	NCES	OF T	'III	E STAR PAIRS, ET	с.		1
Star Pair.	Distance.	R.A. a. Dec. o Fictitic Star.	nd of ous	Star Pair.	Distance.	R.A De Fict	. and c. of itious tar.
Tauri.			1	a Aurige -continued.		1	1
(Aldebaran) 4 ^h 30 ^m . N. 16 [*] 19 ['] .				a Leonis (Reynlus)	69 35 50	h 10 16 56	44 N
nd :	+ + +	h m		a Urse Majoris (Dubles)	49 17 5	917	25 8
Aurigae (Copella)	30 41 44	10 12 13	SN	n Urse Majoris (Beachanch) a Lyre (Veya)	74 25 23	9 37	21 8
Orionis (Bellatrix)	15 45 29	11 54 51	N	a Aquille (Altair)	1151225	1 37	285
Orionts (Almilam)	23 8 2	9 34 37 11 26 41	N	a Cygui (Deneb) a Piscis Australis (Fomelheuel)	78 10 33	0 56	138 41 S
Orionis. Orionis (Betelgnesc)	24 25 50 21 23 31	11 27 42	N	β Orionis.			
Canis Majoris (Mirzam) Geminorum (Alhena)	43 20 54	11 22 37	NS	(Rigel) 5h 10m.			
Canis Majoris (Adara)	57 4 4	11 17 36	N	and :			
Canis Majoris	56 40 54	11 27 40	N	γ Orionis (Bellatrie)	14 47 22	11 12	105
Geminorum (Pollar)	45 1 45	\$ 15 62	S	e Orionis (Alailam)	8 50 20	11 32	16 S
Argûs	88 42 44	11 2 24	Ň	a Orionis (Betelgnese)	18 36 20	11 30	328
Argûs	88 29 19	t1 8 30	N	B Canis Majoris (Mirzam)	19 13 47	10 17	58 N
Argus. Leonis (Regalus)	98 35 22 80 8 18	18 47 71	N	ε Canis Majoris (Adara)	32 4 19 32 5 19	11 32	38 S 46 N
Urse Majoris (Debhc) Crucis	78 43 52	9 56 26	S N	a Geminorum (Castor)	32 33 29 52 12 19	10 26	52 N 36 S
Crucis	119 18 55	11 9 12	N	B Geminorum (Pollar)	51 22 54	11 40	42 8
Ursæ Majoris (Alioth) Ursæ Majoris (Benetuasek)	93 56 4	9 58 26	S	y Argús	53 52 58	10 49	16 N
Lyrae (Vegu) Cyoni (Deuda)	117 52 54	11 2 25	NN	δ Argûs 8 Argûs	62 20 19	10 48	J2 N
Genio	90 37 34		2	* Leonis (Doubled)	10 1 14	10,0	1921
l'iscis Australis (Fomalkant)	93 32 15	8 50 55	S	a Urse Majoris (Dubhe)	95 56 55	11 26	27 8
Aurigæ.				γ Crucis	90 Ja 49 93 14 40	10 50	20 N 31 N
Capella) 5h 10m.				ß Crucis	94 16 4	10 52	28 N
d:-				 Ursæ Majoris (Alioth) a Virginis (Spica) 	110 33 39	9 26	32 S 71 N
Orionis (Rigel) Orionis (Rellatrix)	See	page 33	J.	B Centauri a Trianguli Australis	101 51 21	10 56	22 N
Tanri (Nath),	17 29 59	11 32 6	N	a Pavonis	104 12 59	11 22	238
Orionis	48 14 48	11 37 7	Ň	a Gruis	95 445 893555	11 35	40 S 58 S
Orionis (Betelynese) Cauis Majoris (Mirzena)	19 19 1	11 58 12	NN	γ Orionis.			
Geminorum (Alhena)	34 5 6	13 4 25	Ň	(Bellatrix) 5h 20m,			
Canis Majoris	76 42 38	12 28 18	Ň	and :-			
Geminorum (Castor) Geminorum (Pollur)	29 59 3	15 50 42	NN	β Tauri (Nath)	22 15 50	11 20	o IS N
Argûs	100 43 14	12 37 20	NN	(Orlonis	9 9 51	11 30	25 N
Argûs	109 53 18	12 39 21	N	β Canis Majoris (Mirzam)	28 9 11	11 35	30 N
Look	for the St	ar with t	the	maller P A in hold turn			-
LIOOK	ing the Of	ar with t	are a	minister in at in bonn type.			

B

ð

a ß

7 .

õ

₿ a

a

7 .

7) a

a

a

.

13

an

A

YB

2

β

7 = 5

a B

	Angular Distance bet	tween Sta	nrs	<u>S</u>				
	α Ursae Minoris (Polaris)						_	
<i>(</i>)	RA, GHA or Longitude	1	h	22	m	33.70	s	
outs	Declination or Latitude	88	0	46	'	26.0	"	
lnp	α Tauri (Aldebaran)		_					
	RA, GHA or Longitude	4	h	30	m	10.90	s	
	Declination or Latitude	16	0	18	'	30.0	s	
							_	
suc	Z ₁	87.4569694	.04	585	+3	2.94334	40	8647948i
atic	z ₂	0.50971383	44	784	6+	1.2333	22	26643108i
Calcul	$ (z_1-z_2)/(\overline{z}_2z_1+1) $	0.7380191						
Results	Angular Distance, <i>d</i>	72° 51' 22"						
Control	<u>Select</u> Format for 1 st point Format for 2 nd point	hhmmss hhmmss		ddm ddm	mss			

B1900 coordinates

 $z = \tan\left(\frac{\pi}{4} + \frac{\delta}{2}\right)e^{i(\text{RA})}$

$$d = 2 \tan^{-1} \left| \frac{z_1 - z_2}{\overline{z_2} z_1 + 1} \right|$$

in reference $d = 72^{\circ}51'23''$

Lord Ellenborough's	Mothod						
		-				\vdash	
α Ursae Minoris (Polaris)							
Right Ascension, α_1	1	h	24	m	00.00	s	
Declination, δ_1	88	0	48	'	00.0	"	
α Tauri (Aldebaran)							
Right Ascension, α_2	4	h	30	m	00.00	s	
Declination, δ_2	16	•	19	'	00.0	"	
z ₁	89.147104956241	4+	-34.22	203	674202	228	35i
Z ₂	0.5107686906721	11	+1.23	331	047002	256	615i
$2 \ln(z_1 \ \overline{z}_2)$	184.8980437						
$ (z_1-z_2)(1+z_1 \ \overline{z_2}) $	12118.97404						
$(1- z_2 ^2) \ \overline{z}_1 - (1- z_1 ^2) \ \overline{z}_2$	4587.1382823672	9-	11215	5.7	704498	88	1i
<i>z</i> _{p1}	-0.9398105439315	51	1+0.3	84	373141	68	4945i
z _{p2}	0.9115642926804	5-(0.372	82(0706564	45	92i
Fictitious Stars Positions							
Right Ascension, α_1	10h 31m 01s						
Declination, δ_1	0° 52' 27"						
Right Ascension, α_2	22h 31m 01s						
Declination, δ_2	-0° 52' 27"						

$$z = \tan\left(\frac{\pi}{4} + \frac{\delta}{2}\right)e^{i(\text{RA})}$$

$$z_{p} = i \frac{2 \operatorname{Im}(\overline{z}_{1} z_{2}) \pm |(z_{1} - z_{2})(1 + \overline{z}_{1} z_{2})|}{(1 - |z_{2}|^{2}) \overline{z}_{1} - (1 - |z_{1}|^{2}) \overline{z}_{2}}$$

$$\alpha = \arg(z); \quad \delta = 2 \tan^{-1} |z| - \frac{\pi}{2}$$

in reference
$$\alpha = 10^{h} 31^{m}$$
, $\delta = +1^{\circ}$

Clearing Lunar Distances

- An exercise in spherical trigonometry
- Does not depend on spherical coordinates
 - complex numbers loose some of their advantages
- Choose to map the zenith to zero on the complex plane
 - i.e. complex plane is tangent to the sphere at the zenith point

Where *d* = measured angular distance between the Moon and Star

$$|z_1| \equiv z_1 = \tan\left(\frac{\mathrm{ZD}_{\mathfrak{D}}}{2}\right); \quad |z_2| \equiv z_2 = \tan\left(\frac{\mathrm{ZD}_{\star}}{2}\right)$$

Formulas entirely in terms of tangents of the half lengths of the sides

The star α Pegasi is observed on 31st December, 1884 from Absarat, Nubia, Nile Valley

Wilberforce Clarke, H., *Longitude by Lunar Distances*, W. H. Allen & Co., London, 1885; <u>http://books.google.com/books?id=mtoMAAAAYAAJ</u>.

	Clearing Lunar Distanc	e Sight					
	Apparent lunar distance, d	103	0	26	•	24	"
	Apparent lunar altitude, h _M	35	0	37	'	28	"
uts	Apparent stellar altitude, h_S	40	0	17	'	24	"
dul	Geocentric lunar altitude, h'_M Geocentric stellar altitude, h'_S	36 40	0 0	26 16	'	01 15	"
			_				
	z ₁	0.513661					
	z ₂	0.463230					
JS							
ior	tan²d/2	1.605615					
ulat	cos θ	-0.982350					-
alcı	z' ₁	0.504768	-				
ပ	z ′ ₂	0.463433					
	· ² "·	4 504077					
	tan-072	1.561277	_				\vdash
(0							
ults	Cooportria lunar distance d'	1020 201 20 6"					_
ses		102 39 30.0	-				-
			-				

$$|z_{1}| \equiv z_{1} = \tan\left(\frac{ZD_{y}}{2}\right); \quad |z_{2}| \equiv z_{2} = \tan\left(\frac{ZD_{\star}}{2}\right)$$

$$\cos\theta = \frac{z_{1}^{2} + z_{2}^{2} - (1 + z_{1}^{2}z_{2}^{2})\tan^{2}\frac{d}{2}}{2z_{1}z_{2}\left(1 + \tan^{2}\frac{d}{2}\right)}$$

$$\tan^{2}\frac{d'}{2} = \frac{z_{1}'^{2} + z_{2}'^{2} - 2z_{1}'z_{2}'\cos\theta}{1 + z_{1}'^{2}z_{2}'^{2} + 2z_{1}'z_{2}'\cos\theta}$$

in reference $d' = 102^{\circ}39'30''$

Extensions and Generalizations

The rotational form

$$T(z) = \frac{az+b}{-\overline{b}z+\overline{a}}$$

has deep connections to other fields. Coefficients *a* and *b* are related to

- Cayley-Klein coefficients that appear in quantum mechanics of spin ¹/₂ particles
- Quaternion representation of rotations used in video game algorithms

Bilinear form accommodates relativistically correct Lorentz boost

$$T(z) = \frac{az+b}{\overline{b}z+d}; \quad a,d \in \mathbb{R}$$

➢ Simplifies calculation of annual aberration (≈ 0.3′ effect)

$$\tan\frac{\theta'}{2} = \sqrt{\frac{c-v}{c+v}} \tan\frac{\theta}{2}$$

> Pure Lorentz boost is formally a rotation through an imaginary angle!

	EX-MERIDIAN STAR PAIRS, WITH DISTANCES FOR EVERY TEN DAYS. (See Introduction, p. xiv.)								RS, N DAYS.	
 θ Scorp R.A. 17^h 3 Dec. 42^a 5 Mag. 2.0 	III. bii and a O phiuchi, b ^{om} . R.A. 17 ^h 30 ^m 6' S Dec. 12 [*] 38' N. . Mag. 2*1	a Pavoni R.A. 20 ^b 18 Dec. 57 [*] 2 Mag. 2 [•] 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				VI. (a Urser Minoris) and dir (a Cassiopeia). 4 ^m - B.A. o ^h 55 ^m 5' N. Dec. 56 ^o 1' N. - Mag. 2'2-2-8			
Date.	Distance.	Date.	Distance.	Date.		Distance.	Date,		Distance.	
Jan. 1 11 11 121 31 Feb. 10 Mar. 1 11 11 31 Apr. 10 30 30 30 10 30 10 30 10 30 10 30 10 30 30 10 10 30 10 10 10 10 10 10 10 10 10 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Jan. 1 11 11 11 11 11 11 11 11 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dce.	IIII IIIII IIIII IIIII IIIII IIIII IIIII IIIIII		Jan, Feb, Mar, Apr, May June Juny Aug, Sept, Oot, Nov, Dec,	I I I I I I I I I I I I I I	*99 8 9 9 9 9 9 9 9 9 9 9 9 9 9	

Effect of aberration of light on distance between star pairs

Sprigge, J. A., Doak, W. F., Hudson, T. C. & Cox, A. S., *Stars and Sextants*, J. D. Potter, London, 1903 <u>http://www.archive.org/details/starssextants00spri</u>

Relativistic Aberration under Stereographic Projection

Relativistic Aberration under Stereographic Projection

Aberration moves star positions toward direction of observer's motion

- Equivalent to shifting the plane of stereographic projection
- Construction is exactly correct for special relativity
- Does not work for classical Bradley aberration

Summary and Conclusions

- Representing points in spherical coordinate systems as complex numbers provides an efficient and transparent way of performing calculations needed in Celestial Navigation
 - Involves only the basic arithmetic of complex numbers available on scientific calculators and computer languages
 - Circles on the sphere remain circles on the plane
 - Transforms many problems from trigonometric to algebraic
- Connected in fundamental ways with
 - Theory of conformal mappings
 - Rotations in 3D
 - Lorentz Transformations
- Advantages may be limited for problems not involving spherical coordinates
- Surprising that greater practical use has not been made of these methods

References

- Stuart, R. G., Quarterly Journal of the Royal Astronomical Society 25 (1984) 126 (http://articles.adsabs.harvard.edu/full/1984QJRAS..25..126S)
- Stuart, R. G., Mon. Not. R. Astron. Soc. 400 (2009) 1366
- Stuart, R. G., *NAVIGATION: Journal of the Institute of Navigation*, **56** (2009) 221(preprint <u>http://www.fer3.com/arc/m2.aspx?i=110015&y=200910</u>)