From the Nautical Almanac

If p_{1}, Z_{1} are the intercept and azimuth of the first observation, p_{2}, Z_{2}, of the second observation and so on, form the summations

$$
\begin{aligned}
& A=\cos ^{2} Z_{1}+\cos ^{2} Z_{2}+\ldots=\sum_{i} \cos ^{2} Z_{i} \\
& B=\cos Z_{1} \sin Z_{1}+\cos Z_{1} \sin Z_{1}+\ldots=\sum_{i} \cos Z_{i} \sin Z_{i} \\
& C=\sin ^{2} Z_{1}+\sin ^{2} Z_{2}+\ldots=\sum_{i} \sin ^{2} Z_{i} \\
& D=p_{1} \cos Z_{1}+p_{2} \cos Z_{2}+\ldots=\sum_{i} p_{i} \cos Z_{i} \\
& E=p_{1} \sin Z_{1}+p_{2} \sin Z_{2}+\ldots=\sum_{i} p_{i} \sin Z_{i}
\end{aligned}
$$

where the number of terms in each summation is equal to the number of observations.
With $G=A C-B^{2}$, an improved estimate of the position at the time of the fix $\left(L_{I}, B_{I}\right)$ is given by

$$
L_{I}=L_{F}+(A E-B D) /\left(G \cos B_{F}\right), \quad B_{I}=B_{F}+(C D-B E) / G
$$

In the above $\left(L_{F}, B_{F}\right)$ is the longitude and latitude of the assumed position (AP) of the fix.
For 3 sights this procedure yields the symmedian point of the triangle or cocked hat formed by the 3 lines of position (LOP).

This result is derived follows: It can be shown that a point that is displaced by an amount (X, Y) from the AP lies at a perpendicular distance of $|X \sin Z+Y \cos Z-p|$ to an LOP with intercept p and azimuth Z. The results in the almanac are now easily derived by least squares regression which involves finding X and Y that minimize the quantity

$$
\Delta^{2}=\sum_{i}\left(X \sin Z_{i}+Y \cos Z_{i}-p_{i}\right)^{2}
$$

Least squares regression effectively assumes that observational errors in the measurement of altitudes forms a normal distribution and finds the point on the Earth's surface where the probability density for the set of sights is maximum. In matrix form X and Y are given by

$$
\begin{aligned}
\binom{X}{Y} & =\left(\begin{array}{cc}
\sum_{i} \sin ^{2} Z_{i} & \sum_{i} \sin Z_{i} \cos Z_{i} \\
\sum_{i} \sin Z_{i} \cos Z_{i} & \sum_{i} \cos ^{2} Z_{i}
\end{array}\right)^{-1} \cdot\binom{\sum_{i} p_{i} \sin Z_{i}}{\sum_{i} p_{i} \cos Z_{i}} \\
& =\frac{1}{A C-B^{2}}\left(\begin{array}{cc}
A & -B \\
-B & C
\end{array}\right) \cdot\binom{E}{D}
\end{aligned}
$$

Applying Mercator projection scaling in longitude

$$
L_{I}=L_{F}+X / \cos B_{F}, \quad B_{I}=B_{F}+Y
$$

The method described in the almanac can be extended to the case where an unknown constant error or offset, D, is present in all of the measured altitudes and hence in the intercepts. Such a constant offset might arise as a result of index error, or misestimate of the height of the eye. The least squares regression then becomes

$$
\left(\begin{array}{l}
X \\
Y \\
D
\end{array}\right)=\left(\begin{array}{ccc}
\sum_{i} \sin ^{2} Z_{i} & \sum_{i} \sin Z_{i} \cos Z_{i} & \sum_{i} \sin Z_{i} \\
\sum_{i} \sin Z_{i} \cos Z_{i} & \sum_{i} \cos ^{2} Z_{i} & \sum_{i} \cos Z_{i} \\
\sum_{i} \sin Z_{i} & \sum_{i} \cos Z_{i} & N
\end{array}\right)^{-1} \cdot\left(\begin{array}{c}
\sum_{i} p_{i} \sin Z_{i} \\
\sum_{i} p_{i} \cos Z_{i} \\
\sum_{i} p_{i}
\end{array}\right)
$$

where N is the number of sights taken. The 3×3 matrix is singular when there are less than 3 observations. D is the quantity that should be subtracted from each of the intercepts, p_{i}, in order to compensate for the constant error and produce the maximum peak probability density. This peak occurs at the point (X, Y) relative to the AP. When the average of the intercepts in zero this produces the same result as the method given in the almanac.

