Fix From a Set of Sights Taken over a short period of time that spans Meridian Transit

Typically we use our DR position to calculate the time of meridian transit for taking a noon sight to confirm our Latitude. Below is a numerical method for calculating the sextant altitude \& time of meridian transit that does not depend on an accurate DR Position. This method allows us to determine both Latitude \& Longitude from a set of sextant altitudes taken over a short period of time that spans meridian transit.

■ Let $\mathbf{T}_{\mathbf{i}}$ represent the observation times in decimal hours and $\mathbf{H}_{\mathbf{i}}$ represent the associated sextant altitudes in decimal degrees, for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} where \mathbf{n} is the number of sights. Minimum number of sights is 3 , Maximum number of sights is 12 .

- For best results approximately half (6) of the sights should be taken during a six minute period of time before meridian transit and approximately half (6) of the sights should be taken during a six minute period of time following meridian transit.
- Use the sextant altitudes ($\mathbf{H}_{\mathbf{i}}$) and their associated times of observation $\left(\mathbf{T}_{\mathbf{i}}\right)$ to calculate the coefficients $\left(\mathbf{a}_{\mathbf{0}}, \mathbf{a}_{1}, \mathbf{a}_{2}\right)$ of a second order polynomial where $\mathbf{H}=\mathbf{a}_{\mathbf{o}} \boldsymbol{+} \mathbf{a}_{\mathbf{1}} \mathbf{T}+\mathbf{a}_{\mathbf{2}} \mathbf{T}^{\mathbf{2}}$

First calculate the following for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} where \mathbf{n} is the number of sights:

$$
\begin{aligned}
& \boldsymbol{\Sigma} \mathbf{T}_{i} \\
& \Sigma \boldsymbol{T}^{2}{ }_{i} \\
& \Sigma \boldsymbol{T}^{3}{ }_{i} \\
& \boldsymbol{\Sigma} \boldsymbol{T}^{4}{ }_{i} \\
& \boldsymbol{\Sigma} \mathbf{H}_{i} \\
& \boldsymbol{\Sigma} \mathbf{T}_{i} \mathbf{H}_{\boldsymbol{i}} \\
& \boldsymbol{\Sigma} \mathbf{T}^{2}{ }_{i} \mathrm{H}_{\mathrm{i}}
\end{aligned}
$$

Then use the following matrix operations* to determine the coefficients:

$$
\left|\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right|=\left|\begin{array}{lll}
n & \Sigma T_{i} & \Sigma T^{2}{ }_{i} \\
\Sigma T_{i} & \Sigma T_{i}^{2} & \Sigma T^{3}{ }_{i} \\
\Sigma T_{i}^{2} & \Sigma T^{3}{ }_{i} & \Sigma T^{4}{ }_{i}
\end{array}\right|^{-1} \quad x\left|\begin{array}{l}
\boldsymbol{\Sigma} H_{i} \\
\Sigma T_{i} H_{i} \\
\Sigma T_{i}^{2} H_{i}
\end{array}\right|
$$

*Most hand held scientific calculators such as TI83 \& TI84 provide these matrix operations as built in functions.

Then calculate $\mathbf{T}_{\mathbf{M T}}$ (time of meridian transit) and $\mathbf{h} \mathbf{h m}_{\mathbf{M T}}$ (sextant altitude of the body at meridian transit) Where $\mathrm{T}_{\mathrm{MT}}=-\mathrm{a}_{\mathbf{1}} /\left(2 \mathrm{a}_{\mathbf{2}}\right)$ and $\mathbf{h s _ { M T }}=\mathrm{a}_{\mathbf{0}}+\mathrm{a}_{\mathbf{1}} \mathrm{T}_{\mathrm{MT}}+\mathrm{a}_{\mathbf{2}} \mathbf{T}^{\mathbf{2}}{ }_{\mathrm{MT}}$

For all the above calculations convert time to decimal hours

Example 12:10:09
 $$
T=12+10 / 60+09 / 3600=12.16917
$$

Convert the date and calculated zone time of meridian transit ($\mathbf{T}_{\mathbf{M T}}$) to Greenwich date \& GMT then lookup the GHA \& Dec of the body in the Nautical Almanac.

■ Calculating Longitude of the observer at Meridian Transit.
Using the Greenwich Date \& GMT of Meridian Transit obtain the GHA value of the body from the Nautical Almanac corresponding to the Greenwich Date \& GMT. The value of GHA is then used to determine the observer's longitude based on the following:

```
Observer's West Longitude = GHA
    Or
Observer's East Longitude = 360
```

Note that each second of error in the calculated zone time of Meridian Transit ($\mathbf{T}_{\mathbf{M T}}$) will result in an error of ± 0.25 arc minutes in the calculated value of the observer's longitude. If your sights are of "acceptable" accuracy, the calculated time of Meridian Transit should be within ± 4 seconds of the actual time of Meridian Transit, which would produce a calculated value for the observer's longitude accurate to within ± 1.0 arc minute.

■ Calculating Latitude of the observer at Meridian Transit.

Convert sextant altitude at meridian transit ($\mathbf{h s}_{\mathbf{M T}}$) to observed altitude at meridian transit ($\mathbf{H o}_{\mathbf{M T}}$) by applying index correction, dip, atmospheric refraction, parallax in altitude and semi-diameter corrections. Then determine Zenith Distance (Z), also known as co-altitude. \mathbf{Z} is the angular distance from the observer's zenith to the body (the arc of a vertical circle between the observer's zenith and the body).
$\mathbf{Z}=9 \mathbf{9 0}^{\circ}-\mathbf{H o}_{\mathbf{M T}} \quad \mathbf{Z}$'s name (\mathbf{N} or \mathbf{S}) is the direction (\mathbf{N} or \mathbf{S}) from the Body to the observer's Zenith. The Latitude of Observer can then be determined by the following equation:

$$
\mathrm{L}=\mathrm{Z} \pm \mathrm{Dec}^{*}
$$

[^0]

[^0]: * If Z \& Dec have opposite names subtract Dec

