Fix From a Set of Sights Taken over a short period of time that spans Meridian Transit

Typically we use our DR position to calculate the time of meridian transit for taking a noon sight to confirm our Latitude. Below is a numerical method for calculating the sextant altitude & time of meridian transit that does not depend on an accurate DR Position. This method allows us to determine both Latitude & Longitude from a set of sextant altitudes taken over a short period of time that spans meridian transit.

• Let T_i represent the observation times in decimal hours and H_i represent the associated sextant altitudes in decimal degrees, for i = 1 to n where n is the number of sights. Minimum number of sights is 3, Maximum number of sights is 12.

■ For best results approximately half (6) of the sights should be taken during a six minute period of time before meridian transit and approximately half (6) of the sights should be taken during a six minute period of time following meridian transit.

• Use the sextant altitudes (H_i) and their associated times of observation(T_i) to calculate the coefficients (a_0 , a_1 , a_2) of a second order polynomial where $H = a_0 + a_1 T + a_2 T^2$

First calculate the following for **i** = **1** to **n** where **n** is the number of sights:

ΣΤ_i ΣT²i ΣT³i ΣT⁴i ΣΗ_i ΣΤ_iΗ_i ΣΤ_iΗ_i

Then use the following matrix operations* to determine the coefficients:

a_0		n	Σ Τ _i	ΣΤ² _i	-1		ΣΗ ;
a_1	=	Σ Τ _i	ΣΤ ² _i	ΣΤ ³ _i		x	Σ Τ _i Η _i
a₂		Στ²	, ΣΤ ³ ,	ΣΤ ⁴ _i			Σ Τ ² _i Η _i

*Most hand held scientific calculators such as TI83 & TI84 provide these matrix operations as built in functions.

Then calculate T_{MT} (time of meridian transit) and hs_{MT} (sextant altitude of the body at meridian transit) Where $T_{MT} = -a_1/(2a_2)$ and $hs_{MT} = a_0 + a_1T_{MT} + a_2T_{MT}^2$

For all the above calculations convert time to decimal hours

Example 12:10:09 T = 12 +10/60 +09/3600 = 12.16917

Convert the date and calculated zone time of meridian transit (T_{MT}) to Greenwich date & GMT then lookup the **GHA** & **Dec** of the body in the *Nautical Almanac*.

■ Calculating Longitude of the observer at Meridian Transit.

Using the Greenwich Date & GMT of Meridian Transit obtain the **GHA** value of the body from the *Nautical Almanac* corresponding to the Greenwich Date & GMT. The value of **GHA** is then used to determine the observer's longitude based on the following:

Observer's West Longitude = **GHA** or Observer's East Longitude = 360° -**GHA**

Note that each second of error in the calculated zone time of Meridian Transit (T_{MT}) will result in an error of ±0.25 arc minutes in the calculated value of the observer's longitude. If your sights are of "*acceptable*" accuracy, the calculated time of Meridian Transit should be within ±4 seconds of the actual time of Meridian Transit, which would produce a calculated value for the observer's longitude accurate to within ±1.0 arc minute.

■ Calculating Latitude of the observer at Meridian Transit.

Convert sextant altitude at meridian transit (hs_{MT}) to observed altitude at meridian transit (Ho_{MT}) by applying index correction, dip, atmospheric refraction, parallax in altitude and semi-diameter corrections. Then determine Zenith Distance (Z), also known as co-altitude. Z is the angular distance from the observer's zenith to the body (the arc of a vertical circle between the observer's zenith and the body).

Z = **90°** - **HO**_{MT} **Z's** name (**N** or **S**) is the direction (**N** or **S**) from the Body to the observer's Zenith. The Latitude of Observer can then be determined by the following equation:

$L = Z \pm Dec^*$

* If Z & Dec have opposite names subtract Dec

