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I	Introduction	
The	positions	of	the	stars	and	planets	in	the	sky	(the	ephemeris)	typically	refer	to	
the	geometric	center	of	the	object,	which	is	accurate	for	visually	point-like	stars.	But	
for	planets,	specifically	Venus,	with	an	apparent	diameter	of		up	to	sixty-six	arc	
seconds1,	the	"center"	of	the	lighted	region	may	be	measurably	distant	from	the	

geometric	center.		Figure	1	shows	examples	of	
how	the	phase	of	the	planet,	as	observed	from	
Earth,	determines	how	much	of	its	surface	is	
illuminated.			
An	observer,	using	a	sextant,	measures	the	
altitude	of	the	body	above	the	sea	horizon,	
placing	the	center	of	the	body	on	the	horizon.		

When	the	observer	has	little	or	no	magnification,	the	center	of	a	defocused	blur	is	
placed	on	the	horizon,	which	may	introduce	perhaps	a	few	arc	minutes	of	error	as	
compared	to	using	the	geometric	center.		To	compensate	for	this	error,	we	can	
provide	the	center	of	the	illuminated	region	as	the	position	of	the	planet	—	this	is	
the	so-called	phase	corrected	position.	
	

II	Center	of	an	Illuminated	Body	

Definition	of	Center	
The	first	problem	is	to	define	what	we	mean	by	the	center	of	the	lit	region	of	a	
planet	and	how	it	may	vary	with	the	magnification	available	to	the	observer.	I	have	
not	researched	the	problem,	but	have	adopted	as	"reasonable"	to	treat	the	lit	region	
(as	seen	from	Earth)	as	a	two-dimensional	flat	figure,		and	will	place	the	visual	
center	at	the	centroid,	i.e.	at	the	center	of	gravity	of	the	figure.	

It	is	self-evident	that	the	geometric	and	visual	centers	coincide	
when	the	body	is	full,	and	as	some	of	the	body	becomes	shaded,	
the	visual	center	moves	toward	the	illuminated	area,	along	the	
center-line	of	the	body,	as	indicated	in	figure	2.		In	the	extreme,	
the	visual	center	moves	to	the	edge	of	a	crescent.			

	
	
	

Figure	1	-	gray	is	illuminated	

Figure	2	
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Illuminated	Fraction	of	a	Disk	
Define	a	baseline	from	the	planet	to	the	Sun.		Now	define	the	phase	angle	i	as	the	
smallest	angle	off	this	baseline	to	point	toward	Earth.		Note	that	we	restrict	i	to	the	

interval	0°	to	180°	inclusive.		When	the	
phase	angle	i=0°,		an	observer	on	Earth	
sees	a	fully	illuminated	disk.		(Though,	
for	Venus	and	Earth,	this	would	mean	
the	Sun	sits	between	them	and	Venus	
would	not	be	visible	at	all,	being	
"behind"	the	Sun.)		At	i=180°,	the	disk	
presents	its	dark	side	to	the	Earth,	and	is	
not	visible.	
In	figure	3,	we	set	the	diameter	of	the	
disk	to	one,	and	its	radius	to	0.5,	and	we	
see	that	the	lit	length	of	the	diameter	is		
	

€ 

0.5 + 0.5cosi 	 										(1)	
ranging	from	one	down	to	zero	as	i	

ranges	from	0°		to	180°.	
Treating	k	as	a	ratio	of	lit	length	to	total	length,	we	have	the	formula2:	

	

€ 

k =
1+ cosi
2

	 	 	 	 	 	 	 	 (2)	

It	turns	out	that	k	is	both	the	fraction	of	the	diameter	that	is	illuminated,	and	also	
the	ratio	of	lit	area	to	the	total	area.	See	the	appendix	for	details.		Also	note	that	as	i	
goes	beyond	90°,	the	quantity	0.5	cos	i	becomes	negative,	and	k	becomes	smaller	
than	0.5,	indicating	a	waning	planet.	

Centroid	of	the	Illuminated	Disk	
Figure	4	shows	the	three-dimensional	picture.	Figure	5	presents	the	two-
dimensional	view	as	seen	from	the	Earth.		The	lower	red	arc	in	figure	5	demarks	the	

illuminated	upper	region	from	the	dark	region	below.		
The	red	arc	is	one-half	of	an	
ellipse	(see	the	appendix	for	
details),	with	a	semi-major	axis	of	
r	(i.e.	the	radius,	or	if	you	prefer,	
the	semidiameter	of	the	planet)	
and	a	semi-minor	axis	b.	
	

Given	a	circle	of	radius	r	and	center	at	(0,0),	the	area	and	
centroid3	of	its	upper	half	(a	semicircle)	is		

	

€ 

x = 0, y = 4r
3π
, Area =

πr2

2
	 	 	 	 	 (3)	

Figure	3	

Figure	4	

Figure	5	
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The	area	and	centroid	for	the	lower	semiellipse,	with	semi-major	axis	r	and	semi-
minor	axis	b	is		

	

€ 

x = 0, y = − 4b
3π
, Area =

πrb
2
	 	 	 	 	 (4)	

The	combined	"center	of	gravity"	for	the	composite	body	is	found	using4	

	

€ 

y = y 1⋅ Area1 + y 2 ⋅ Area2
Area1 + Area2

	 	 	 	 	 	 (5)	

which	gives	us	

	

€ 

x = 0

y =

4r
3π
⋅
πr2

2
−
4b
3π
⋅
πrb
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

πr2

2
+
πrb
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

=

2r
3

r2 − b2( )
πr
2

r + b( )
=
4 r − b( )
3π

	 	 	 (6)	

In	(6),	the	quantity	r-b	is	the	length	of	the	unlit	part	of	the	diameter.		From	(2),	we	
know	the	length	of	the	lit	diameter	is	

	

€ 

k⋅ diameter = k2r 	
and	consequently,	the	length	of	the	unlit	diameter	is	

	

€ 

r − b = 2r − 2rk = 1− k( )2r 	 	 	 	 	 	 (7)	

Using	(7)	in	(6),	we	have	the	distance	to	move	from	the	center	of	the	disk	in	the	
direction	of	the	lighted	region:	

	

€ 

y = 8r
3π

1− k( )
	 	 	 	 	 	 	 	 (8)	

III	Finding	the	Phase	Correction	

Fraction	of	Venus	that	is	Illuminated	
It	will	take	us	too	far	afield	to	get	into	a	discussion	on	how	to	find	the	positions	of	

the	planets,	but	software	is	available	that	provides	position	vectors	of	
the	three	bodies	in	question,	namely	Venus,	the	Sun,	and	Earth.		Assume	
we	have	these	position	vectors,	labeled	p,	q	and	r	in	figure	6.			
The	phase	angle	i	(see	figure	3)	can	be	found	using	the	Law	of	Cosines.		
Let	the	lower	case	letters	represent	the	lengths	of	each	vector,	then	by	
the	Law	of	Cosines:	

	

€ 

q2 = p2 + r2 − 2prcosi 	 	 	 	 			(9)	

Figure	6	
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from	which	we	get	

	

€ 

cosi =
p2 + r2 − q2

2pr
	 	 	 	 	 	 	 (10)	

Also,	from	(2),	we	can	write	
	

€ 

cosi = 2k −1	 	 	 	 	 	 	 	 (11)	
and	using	(11)	to	eliminate	the	reference	to	the	cosine	in	(10)	

	

€ 

2k −1 =
p2 + r2 − q2

2pr

k =
1
2

p2 + r2 − q2

2pr
+1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

p2 + 2pr + r2 − q2

4 pr

k =
p + r( )2 − q2

4 pr

	 	 	 	 (12)	

where	p	is	the	Earth-Venus	distance,	q	is	the	Sun-Earth	distance,		r	is	the	Sun-Venus	
distance,	and	k	is	the	illumination	fraction	(from	0	to	1)	of	Venus,	as	seen	from	
Earth2.	
	

Venus	Semidiameter	
Meeus5	states	that	the	8.34"	semidiameter	for	Venus	provided	by	the	Astronomical	
Almanac	refers	to	the	planet's	crust,	and	not	to	the	top	of	the	reflecting	cloud	layers.		
He	suggests	using	the	older	value	of	8.41".		PyEphem6	(free	software)	uses	8.46".			In	
either	case,	this	value	is	the	semidiameter	s0	of	the	planet	in	arc	seconds	when	
observed	from	a	distance	of	1	AU	(149597870700	m).		At	any	other	distance	p	
measured	in	AU,	the	observed	semidiameter5	is	

	

€ 

s =
s0
p
⋅

π
180⋅ 3600

	 radians	 	 	 	 	 (13)	

where	we	have	translated	from	arc	seconds	to	radians.	
	

Phase	Correction	Formula	
Assume	we	have	a	unit	vector	p	at	the	center	of	the	Earth	pointing	at	the	center	of	

the	"flat	disk"	of	Venus,	as	observed	from	Earth.		We	could	
rotate	the	vector	by	some	angle	θ	so	that	it	points	at	the	
desired	new	location.	Perhaps	easier,	we	can	add	a	properly	
scaled	vector	c	(correction	vector)	that	is	both	perpendicular	
to	p	and	points	to	the	"lit	region"	of	the	flat	disk.		Lastly,	re-
normalize	the	resultant	to	unit	length	(though	for	the	small	
angles	involved	here,	this	may	be	unnecessary).	

Figure	7	
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From	figure	7,	with	the	vectors	having	lengths	p	and	c,	we	can	write	

	

€ 

tanθ =
c
p
	 	 	 	 	 	 	 	 (14)	

and	for	θ<<1	radian,	and	the	length	of	p	equal	to	one,	we	have	the	approximation	

	

€ 

θ rads[ ] ≈ c 	 	 	 	 	 	 	 	 (15)	

In		other	words,	we	should	scale	the	unit	vector	c	by	a	correction	c	measured	in	
radians.		The	expression	for	the	correction	value	is	given	by	(8),	in	the	same	units	as		
r	(i.e.	the	semidiameter)	of	Venus.		Thus	we	use	the	semidiameter	of	Venus	
expressed	in	radians	(eq	13)	in	place	of	r:	

	

€ 

ʹ p = p +
8s
3π

1− k( ) c

plit =
ʹ p 
ʹ p 

	 	 	 	 	 	 	 (16)	

where	k	is	the	illuminated	fraction,	defined	in	(12).	
	

Correction	Vector	c	
We	now	find	the	unit	length	vector	c	that	points	in	the	direction	to	apply	the	phase	
the	correction.		To	begin,	we	note	that	the	Sun,	Earth	and	Venus	define	a	plane,	and	
that	plane	is	defined	by	a	vector	normal	to	it.	This	normal	can	be	computed	by	a	
vector	cross-product.		Referencing	the	vectors,	scaled	to	unit-length,	depicted	in	
figure	6,	we	have	
	

€ 

n = r × p 	 	 	 	 	 	 	 	 (17)	

where	n	will	be	vector	pointing	out	of	the	paper,	toward	the	reader.			If	we	now	
cross	n	with	p,	the	resultant	vector	c	will	be	perpendicular	to	p,	and	lie	in	the	plane	
of	the	three	bodies,	and	pointing	toward	the	lighted	region	of	Venus,		viewed	as	a	
flat	disk.		Normalize	c	to	unit-length	before	using	it	in	(16).	
The	operations	just	described	are	known	as	a	triple	vector	product,	and	it	has	a	
convenient	identity:	

	

€ 

a × b( ) × c = a • c( )b − b • c( )a 	 	 	 	 	 (18)	

which	replaces	three	(relatively	complicated)	cross	products	with	simple	dot	
products	and	vector	addition.		In	our	problem,	we	have	

	

€ 

ʹ c = r • p( )p − r

c =
ʹ c 
ʹ c 

	 	 	 	 	 	 	 (19)	

knowing	that	p	is	unit	length.			
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If	p	and	r	are	parallel	then	their	cross	product	has	zero	length,	so	to	avoid	numerical	
problems	the	algorithm	should	abort	and	return	a	zero	phase	correction.		As	this	
condition	only	occurs	when	Venus	is	"behind"	the	Sun	or	when	completely	dark,	this	
is	a	reasonable	thing	to	do.	
	

Components	of	the	Phase	Correction	
The	new	look	direction	plit	given	by	(16)	points	at	the	centroid	of	the	illuminated	
area	of	Venus.				Assuming	plit	has	components	

	

€ 

plit = cosdeccosra cosdec sin ra sindec[ ] 	 	 	 (20)	

we	translate	to	spherical	coordinates	using	

	

€ 

dec = sin−1plit [3]

ra = atan2 plit [2], plit [1]( )
	 	 	 	 	 	 (20)	

If	we	also	translate	the	original	p	vector	to	spherical	coordinates,	we	can	explicitly	
compute	the	phase	corrections	to	the	declination	and	right	ascension:	

	

€ 

Δ ra = ralit − raorig

Δ dec = declit − decorig
	 	 	 	 	 	 	 (21)	

	

IV	An	Example	
Using	PyEphem6	(which	I	don't	recommend	due	to	bugs,	but	nevertheless	is	
convenient	for	this	example),	at	the	date	and	time	of	1977	March	18			00:02:17	UT,	
we	find	
	  

Description Distance (AU) Unit Vector 

Earth→Venus   p 0.3326292634010315 [ 0.90257558,  0.32622803,  0.28094946] 

Sun→Earth      q 0.9953900575637817  

Sun→Venus     r 0.7192550897598267 [-0.96492143,  0.2111272 ,  0.15605105] 

Correction Dir   c  [ 0.43033829, -0.70314989, -0.56602932] 
 

€ 

k =
p + r( )2 − q2

4 pr
= 0.1208585	

€ 

s rads[ ] =
s0 "[ ]
p AU[ ]

⋅
π

180⋅ 3600
=

8.41
0.3326292634

⋅
π

180⋅ 3600
= 0.0001225774 	

€ 

ʹ p = p +
8s
3π

1− k( ) c

ʹ p = p + 9.14719729213e - 05 c = [ 0.90261494,  0.32616371,  0.28089768]
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	 Original	(°)	 Phase	Adj.	(°)	 Correction	(')	
Right	Ascension	 19.87194512375141	 19.86753517695265     -0.26460  

Declination	 16.31687933886024	 16.31378825824658     -0.18546	
	
Translating	from	right	ascension	to	Greenwich	Hour	Angle	negates	that	correction:	
	 GHA=	Sidereal_TimeGreenwich°	-	(RA+Δ)°	=	GHA0	-	Δ	

	We	find	the	phase	corrections	to	be:	

	

€ 

ΔGHA = +0.26 ʹ 5  ≈ +0. ʹ 3 

ΔDec  = -0.18 ʹ 5 ≈ - 0. ʹ 2 
	

On	1977	March	18			00:02:17	UT,	sidereal	time	at	Greenwich	is	11:44:03.26,	or	
176.0136°,	and	the	GHA	of	Venus,	using	the	phase	adjusted	location,	is	
	 GHA=176.0136°	-	19.867535°=	156°	8.764'≈156°	8.8'	
and	the	corrected	declination	is		
	 Dec=16.313788°=	16°	18.827'≈	16°	18.8'	
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Appendix	
	
Here	I	will	fill	in	some	details	glossed	over	in	the	main	section,	as	often	what	is	
obvious	when	working	on	a	problem	is	less	so	at	some	later	time,	and	I	am	left	
wondering,	"How	did	I	get	that?"	

Projection	of	a	Tilted	Circle	is	an	Ellipse	
When	looking	at	the	lighted	orb	of	Venus,	but	at	some	tilt	angle,	we	see	an	
apparently	flat	disk,	some	fraction	of	which	is	unlit.		In	figure	A-1,	the	vertical	black	

diameter	represents	a	plane	(its	other	dimension	is	
in/out	of	the	paper)	tilted	i	degrees	relative	to	the	
"blue"	plane	(which	is	the	"screen"	that	the	observer	is	
viewing).			
Figure	A-2	is	a	three-dimensional	version.	
	
	

	
	

The	red	circle	in	the	plane	tilted	by	angle	i	
relative	to	the	blue	plane	has	the	equation	

	

€ 

ʹ x 2 + ʹ y 2 = r2	 	 (A1)	

A	point	A'	on	this	circle	is	projected	onto	
the	"blue	screen"	at	point	A,	with	the	same	
x-coordinate	as	A',	but	with	a	y-coordinate	
foreshortened:	

	

€ 

x = ʹ x 

y = ʹ y cosi ⇒ ʹ y =
y
cosi

	 	 	 	 	 	 (A2)	

Using	these	values	in	(A1),	we	have	

	

€ 

x 2 +
y 2

cos2 i
= r2

x 2

r2
+

y 2

r2 cos2 i
=1
	 	 	 	 	 	 	 (A3)	

which	can	be	written	as	

	

€ 

x 2

a2
+
y 2

b2
=1	 	 	 	 	 	 	 	 (A4)	

Figure	A-	1	

Figure	A-	2	
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which	is	the	equation	of	an	ellipse	with	

	

€ 

semi −major axis a = r

semi −minor axis b = rcosi
	 	 	 	 	 	 (A5)	

Also,	we	note	without	proof	that	the	area	of	the	full	ellipse	is		
	

€ 

A = π rb 	 	 	 	 	 	 	 	 (A6)	

	

Illumination	Fraction	k	
In	the	text,	the	ratio	of	the	lit	portion	of	the	diameter	to	the	entire	diameter	was	
introduced:	

	

€ 

k =
r ± b
2r

=
1±

b
r
2

	 	 	 	 	 	 	 	(A7)	

where	r	is	the	radius	of	the	disk,	and	b	is	the	distance	from	the	center	to	the	limit	of	
the	lighted	region.		As	noted,	b	depends	on	the	phase	angle	i:	

	

€ 

b = rcosi 	 	 	 	 	 					(A8)	
Using	(A8)	in	(A7),	we	have	the	result	presented	in	the	text	

	

€ 

k =
1±

rcosi
r
2

=
1+ cosi
2

	 	 	 					(A9)	

Note	that	the	cosine	automatically	gives	the	correct	sign,	and	we	
need	not	explicitly	denote	the	plus	or	minus	on	b.		Below,	we	can	

assume	that	b	has	the	correct	sign,	as	determined	by	the	phase	angle	i.		For	example,	
in	figure	3,	where	the	phase	angle	i	is	about	120°,	b	is	negative,	and	"eats	into"	the	
illuminated	area.	
The	area	of	the	illuminated	region	is	the	area	of	a	semicircle,	plus	or	minus	a	half-
ellipse	with	semi-major	axis	r	and	semi-minor	axis	b:	

	

€ 

Alit =
π r2

2
+
π rb
2
	 	 	 	 	 	 	 		(A10)	

and	the	ratio	of	Alit	to	the	area	of	the	whole	circle	is	

	

€ 

Alit

A
=
1
π r2

π r2

2
+
π rb
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =
1+

b
r
2

= k 	 	 	 	 	 		(A11)	

	

Figure	A-	3	
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Finding	the	Centroid	of	a	Semiellipse	
The	centroids	of	common	two-dimensional	figures	are	listed	at	
	 https://en.wikipedia.org/wiki/List_of_centroids	
However,	it	may	be	of	interest	to	show	how	to	calculate	it	from	first	principles.	
The	centroid	is	the	"average"	x	and	y	values,	and	for	a	uniform	density	figure,	it	is	
the	center	of	mass.		Each	coordinate	is	computed	independently,	using	the	formula	

	

€ 

y = 1
A

y dA
Region

∫∫ 	 	 	 	 	 	 	 (A12)	

where	A	is	the	total	area	of	the	figure.		
In	our	case,		the	figure	is	the	upper	half	of	the	ellipse	shown	in	figure	A-4.	We	place	
its	semi-major	axis	to	coincide	with	the	x-axis,	and	its	semi-minor	axis	with	the	y-
axis.			Its	area	is	one-half	that	of	a	full	ellipse:	

	

€ 

A =
π rb
2

⇒
1
A

=
2
π rb

	 	 										(A13)	

We	now	find	its	centroid	using	(A12).		In	(A12),	the	
double	integral	ranges	over	y,	whose	limits	must	be	a	
function	of	x,	and	over	x,	-r	to	+r.		The	lower	limit	of	y	
is	zero.	The	upper	limit	depends	on	the	x	value,	which	
we	can	find	using	the	equation	of	an	ellipse:	

	 	 	 	 	

€ 

x 2

r2
+
y 2

b2
=1⇒ y = b 1− x

2

r2
	 	 (A14)	

Plugging	(A13)	and	(A14)	into	(A12)	

	

€ 

y = 2
π rb

y dy dx
y =0

b 1− x 2

r 2

∫
x =−r

r

∫ 	 	 	 	 	 	 (A15)	

Doing	the	inner	integral	

	

€ 

y dy =
y=0

b 1− x
2

r 2

∫ y 2

2
⎤ 

⎦ 
⎥ 
0

b 1−
x 2

r 2

=
b2

2
1− x

2

r2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 	 	 	 	 	 (A16)	

and	the	outer	integral	

	

€ 

y = 2
π rb

b2

2
1− x 2

r2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dx

x =−r

r

∫ =
b
π r

x − x 3

3r2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
⎤ 

⎦ 
⎥ 
−r

r

=
4b
3π

	 	 	 (A17)	

This	puts	the	y	value	of	the	centroid	about	0.424	of	b	above	the	x-axis.		By	symmetry	
(or	intuition),	we	know	the	x	value	of	the	centroid	is	zero,	but	it	can	be	calculated	
using	(A12)	with	y	replaced	with	x.	

Figure	A-	4	
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