The cleared lunar distance is used to determine what GMT that distance corresponds to. The Nautical Almanac listed the lunar distances for the moon and various objects at three-hour intervals. The cleared distance would lie within one of those intervals.

The basic idea is to use interpolation to find the time corresponding to the cleared distance.

If
D is the angular difference between the tabulated distances which bracket your cleared distance: $\mathrm{dd}^{\circ} \mathrm{mm}^{\prime} \mathrm{ss}^{\prime \prime}{ }_{\mathrm{UTCi}}$ and $\mathrm{dd}^{\circ} \mathrm{mm}^{\prime} \mathrm{ss}^{\prime \prime}{ }_{\mathrm{UTCi}+3}$
and
d is the angular difference between the earlier tabulated distance and your cleared distance: $d^{\circ} \mathrm{mm}^{\prime} \mathrm{ss}^{\prime \prime}{ }_{\text {UTci }}$ and $\mathrm{dd}^{\circ} \mathrm{mm}^{\prime} \mathrm{ss}^{\prime \prime}{ }_{\text {UTCi+t }}$
and
t is the yet unknown time interval hh:mm:ss between the earlier tabulated distance UTC and your observation moment: $U^{i} C_{i}$ and $U T C_{i+t}$
then:
D 3 [hours]

- = ---------
d t
or,
t [hours] = 3 [hours] • -
or,
t $[$ seconds] $=10800$ [seconds] .

```
d
```

D
To simplify this calculation the "proportional logarithm" of time t as being the common log of 10800 [seconds] minus the common log of t [seconds] was introduced in the "Tables Requisite".

Because

```
    D • t = 10800 • d
we can write:
    log D + log t = log 10800 + log d
or,
    log t = log 10800 + log d - log D
or, (subtracting each term from log of 10800 [seconds]):
    (log 10800 - log t)=
    =(log 10800 - log 10800) + (log 10800 - log d) - (log 10800 - log D)
or,
    (log 10800 - log t) = (log 10800 - log d) - (log 10800 - log D)
This is therefore:
    plog t = plog d - plog D
```

where plog is the proportional logarithm as defined above.

An example:
On 2015-Jan-01 the reduced and cleared lunar distance between the Moon and Jupiter was found to be equal to 83°.

Looking up the Precomputed Lunar Distances table for that date one finds that the angle (83°) fits within the following brackets:

12:00 UT, $84^{\circ} 35^{\prime} .2$, PL 2620 15:00 UT, $82^{\circ} 56^{\prime} .8$, PL 2628

D, the total change in the distance during the three-hour interval (the angle between the brackets), equals to
$84^{\circ} 35.2^{\prime}-82^{\circ} 56.8^{\prime}=1^{\circ} 38.4^{\prime}$
Looking $1^{\circ} 38.4^{\prime}$ up in "Tables Requisite" (in the ${ }^{\text {h }}{ }^{m}$, column) one finds:
$\mathrm{plog} D=2623$
d is the angular difference between the first distance tabulated at 12:00 UT and the distance cleared for the yet unknown time of lunar sight:
$\mathbf{d}=84^{\circ} 35.2^{\prime}-83^{\circ} 00.0^{\prime}=1^{\circ} 35.2^{\prime}$
Looking $1^{\circ} 35.2^{\prime}$ up in "Tables Requisite" (in the ${ }^{\text {h }}{ }^{m}$, column):
plog d = 2766
The plog t is their difference:

```
    plog t = plog d - plog D = 2766 - 2623 = 143
```

Looking up 143 in "Tables Requisite" (in the PL column) falls between the tabulated values of 142 and 145, which correspond to $2^{\mathrm{h}} 54.2^{\mathrm{m}}$ and $2^{\mathrm{h}} 54.1^{\mathrm{m}}$ or 02:54:12 and 02:54:06 respectively.
The interpolated value of t is approximately 02:54:10.
Adding the time offset t of the lunar to the UTC of the first time bracket gives us the UTC of the lunar itself:
12:00:00 + 02:54:10 = 14:54:10

