Rotation Matrices and Rotated Coordinate Systems

Robert Bernecky
April, 2018

Rotated Coordinate Systems is a confusing topic, and there is no one standard or approach ${ }^{1}$. The following provides a simplified discussion.

Rotating a point in two-dimensions

We can rotate a point in the real-imaginary plane ${ }^{2}$, as shown in Figure 1. Let vector
 a represent the complex number ${ }^{3} \mathbf{a}=\mathrm{a}_{\mathrm{x}}+i \mathrm{a}_{\mathrm{y}}=$ $r \exp (i \beta)$. Multiply by $\exp (i \phi)$, to get the rotated vector $\mathbf{b}=\mathrm{r} \exp (i(\beta+\phi))$. Writing the complex numbers in Cartesian coordinates, the operation is:

$$
\begin{aligned}
& \left(a_{x}+i a_{y}\right)(\cos \phi+i \sin \phi) \\
& =\left(a_{x} \cos \phi-a_{y} \sin \phi\right)+i\left(a_{x} \sin \phi+a_{y} \cos \phi\right)
\end{aligned}
$$

This result tells us how to rotate the point (x, y) counter-clockwise from the x-axis by an angle ϕ. Using matrix notation ${ }^{4}$, and writing the point as a two element (vertical) vector, the rotation is
written as:

$$
\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \cos \phi-y \sin \phi \\
x \sin \phi+y \cos \phi
\end{array}\right] .
$$

And thus we define the rotation matrix \mathbf{R} :

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

This matrix rotates a point in the angular direction from the "first axis" (the x-axis) toward the "second axis" (the y-axis), the short way.

[^0]
Rotate a Coordinate System

We shall represent the basis vectors of a orthonormal coordinate system as 2tuples, e.g. $(1,0)$ and $(0,1)$ and their equivalent 2×1 vectors

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and collecting these vectors (as columns) in a basis matrix B:

$$
\mathbf{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { reference basis, columns are the basis vectors }
$$

It is understood that vector \mathbf{x} represents a distance of "one unit" in the " x-direction", and similarly for the \mathbf{y} vector. The directions and distance metric remain to be specified for any particular circumstance.... though the directions must be orthogonal (form a ninety degree angle).

The individual basis vectors may be rotated counter-clockwise by angle ϕ, by multiplying the rotation matrix \mathbf{R} times each; or in one step by multiplying RB. However, note that some in the literature reserve \mathbf{R} for rotating points. If a point is rotated by angle ϕ, this may be viewed as the basis vectors rotating in the opposite direction, i.e. by $-\phi$, and this is equivalent to using \mathbf{R}^{T} (\mathbf{R} transpose). This is one possible point of confusion!

Rotation Matrix in 3-Dimensions

We will use (Figure 2) an orthogonal, Right-Handed Coordinate system ${ }^{5}$ (RHS), and introduce the $3 \times 1 \mathbf{z}$ vector $=\mathbf{x x y} \mathbf{y}$, where \times represents the vector cross product ${ }^{6}$. If we hold the z coordinate constant, and rotate about the z-axis, counter-clockwise (from the x-axis toward the y-axis), we can use the 2-dimensional \mathbf{R} matrix above embedded in a 3×3 rotation matrix. The convention will be:

- RHS, with orthogonal axes
- Rotate about the spin axis, leaving two axes which will rotate. These will be ordered alphabetically i.e. x, y, z, and this order defines which axis of any pair will be "first".
- When the observer is positioned at the tip of the spin axis, looking back toward the origin, a positive angle means rotate counter-clockwise. With these rules, we get the following rotation matrices:

[^1]\[

$$
\begin{aligned}
& \mathbf{Z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \mathbf{Y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& \mathbf{X}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$
\]

where the name of the rotation matrix indicates the spin axis about which the rotation occurs.

The rotation about the y-axis deserves a comment.

Figure 3 Orienting the axes so that the observer is looking down on the x-z plane (Figure 3), we see that our 2-dimensional rotation matrix \mathbf{R} will rotate from the x-axis toward to z axis: \mathbf{R} rotates the "first axis" i.e. x toward the "second axis" z, and this is clockwise. We would have to switch the order of the axes (make z the first axis) or more simply, replace θ with $-\theta$ in the matrix to achieve a counterclockwise rotation. We chose the latter approach, and used the trigonometric identities:

$$
\sin (-\theta)=-\sin (\theta), \quad \cos (-\theta)=\cos (\theta)
$$

Thus in the \mathbf{Y} rotation matrix, we see the signs on the sine entries negated relative to the other rotation matrices.

Matrix Vector Multiply

Consider the columns of a 3×3 matrix as three 3×1 vectors \mathbf{x}, \mathbf{y}, and \mathbf{z}. Examine the result of multiplying this matrix times some vector \mathbf{v} with components a, b, and c. It can be shown that this multiplication is identical to the sum of three scaled vectors:

$$
\left[\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=a \mathbf{x}+b \mathbf{y}+c \mathbf{z}
$$

In particular, we note the following:

$$
\left[\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\mathbf{x}, \quad\left[\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\mathbf{y}, \quad\left[\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\mathbf{z}
$$

We will use this observation below to interpret the effects of a rotation matrix.

Chaining Rotation Matrices

By applying to the initial coordinate system up to three sequential rotations in turn ${ }^{7}$, we may achieve any orientation we desire. However, the topic is complicated, and we will give it (relatively) short shrift. The main idea will be to distinguish between:

1. Intrinsic rotations - use the "new" axis direction of the rotated system when we apply a second rotation.
2. Extrinsic rotations - always use the original axes directions when applying rotations.

Intrinsic Rotations

Consider some basis matrix \mathbf{B}, where the columns are unit length vectors pointing in the directions $\mathbf{x}^{\prime}, \mathbf{y}^{\prime}$ and \mathbf{z}^{\prime}. These directions may not be the original directions of the reference basis (i.e. the identity matrix I). Now post-multiply B by, for example, $\mathbf{Z}(\theta)$:

$$
\left[\begin{array}{lll}
\mathbf{x}^{\prime} & \mathbf{y}^{\prime} & \mathbf{z}^{\prime}
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Per our observation in the previous section, the last column of \mathbf{Z} will leave \mathbf{z}^{\prime} unchanged. Of course, both \mathbf{x}^{\prime} and \mathbf{y}^{\prime} will be rotated counter-clockwise about axis \mathbf{z}^{\prime}. The important observation is that the rotation occurs around the modified axis \mathbf{z}^{\prime} and not the original \mathbf{z} axis. Thus:

$$
\text { Post-multiply }=\text { intrinsic rotation }=\text { about the changing axes. }
$$

Extrinsic Rotations

Now consider pre-multiplying basis matrix B by some rotation matrix, for example:
ZB
Either matrix conforms to the requirements of being a basis or a rotation, and it is a matter of interpretation or usage that distinguishes which is which. In other words, we may interpret \mathbf{Z} as a basis matrix, rotated about the \underline{z}-axis of the original reference system. Interpreting the \mathbf{B} as a rotation matrix, the multiplication applies "previous rotations" as encoded in the \mathbf{B} matrix, to the original system rotated about an axis of the original reference system. We deduce:

Pre-multiply $=$ extrinsic rotation $=$ about the original axes .

[^2]These ideas may be confusing, so let's do some examples.

Rotating the Equatorial Coordinate System to the Horizon Coordinate System

Intrinsic Example

Figure 4 shows the rotations to translate from the reference system (black) to a new system (green), that coincides with transforming from equatorial to horizon coordinate systems. Before continuing, make note that we will use these identities ${ }^{8}$:

$$
\sin (90-x)=\cos x, \quad \cos (90-x)=\sin x
$$

Intrinsic Rotations Black to Green
Figure 4

We begin with both systems aligned, and then rotate the green system 90° counterclockwise about the z-axis. We use matrix \mathbf{Z} (defined above), with theta $=+90^{\circ}$. We get:
$\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

Next, rotate the green y and z-axes ($90^{\circ}-\mathrm{L}$) counter-clockwise (and thus the z-axis is L° "above" the equatorial $x-y$ plane). We are doing an intrinsic rotation, so this means rotate about the green x-axis, and post-multiply ${ }^{9}$:

[^3]\[

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (90-L) & -\sin (90-L) \\
0 & \sin (90-L) & \cos (90-L)
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \sin L & -\cos L \\
0 & \cos L & \sin L
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -\sin L & \cos L \\
1 & 0 & 0 \\
0 & \cos L & \sin L
\end{array}\right]
\end{aligned}
$$
\]

This matrix rotates the reference system into the green system.

Extrinsic Example

Extrinsic Rotations Black to Green

Figure 5
Now let's use extrinsic rotations, where rotations are always about the axes in the reference system (Figure 5). As before, we begin with aligned systems, and rotate counter-clockwise 90° about the z-axis. But for the second step, we pre-multiply, and rotate $90-\mathrm{L}$ about the reference (black) y-axis:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\cos (90-L) & 0 & \sin (90-L) \\
0 & 1 & 0 \\
-\sin (90-L) & 0 & \cos (90-L)
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
\sin L & 0 & \cos L \\
0 & 1 & 0 \\
-\cos L & 0 & \sin L
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -\sin L & \cos L \\
1 & 0 & 0 \\
0 & \cos L & \sin L
\end{array}\right]
\end{aligned}
$$

and we get the same result as before.

Converting between Coordinate Systems

We can use these results to translate between coordinate systems. Let a point in the reference system be identified with its 3 -tuple coordinates (x, y, z), basis matrix I (the identity matrix), and its position vector:

Figure 6

$$
\mathbf{p}_{1}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

The position of this point is the scaled direction vectors (i.e. basis vectors, encoded as the columns of basis matrix I), added head to tail:

$$
\mathbf{I p}_{1}=\left[\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=x \mathbf{x}+y \mathbf{y}+z \mathbf{z}
$$

That same point in the rotated system with basis \mathbf{B} will have different coordinates $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, and a different position vector \mathbf{p}_{2}, and the exact same location is found using:

$$
\mathbf{B} \mathbf{p}_{2}=\left[\begin{array}{lll}
\mathbf{x}^{\prime} & \mathbf{y}^{\prime} & \mathbf{z}^{\prime}
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=x^{\prime} \mathbf{x}^{\prime}+y^{\prime} \mathbf{y}^{\prime}+x^{\prime} \mathbf{z}^{\prime}
$$

Thus, we can write the equation:

$$
\mathbf{B} \mathbf{p}_{2}=\mathbf{I} \mathbf{p}_{1}
$$

where \mathbf{I}, the identity matrix, is the basis matrix for the reference system and \mathbf{B} is the new system.

If we know matrix \mathbf{B}, this equation tells us how to translate coordinates in the rotated system to coordinates in the reference system:

$$
\mathbf{p}_{1}=\mathbf{B} \mathbf{p}_{2}
$$

And vice versa ${ }^{10}$:

$$
\begin{aligned}
& \mathbf{B} \mathbf{p}_{2}=\mathbf{p}_{1} \\
& \mathbf{B}^{-1} \mathbf{B} \mathbf{p}_{2}=\mathbf{B}^{-1} \mathbf{p}_{1} \\
& \mathbf{p}_{2}=\mathbf{B}^{\mathrm{T}} \mathbf{p}_{1}
\end{aligned}
$$

where we use the fact that the inverse of \mathbf{B} is the transpose ${ }^{11}$ of \mathbf{B} (see last section).
Note that if we know the rotation matrix that transforms the reference system to the new system:

[^4]\[

$$
\begin{aligned}
& \mathbf{B}=\mathbf{R} \mathbf{I} \\
& \mathbf{B}=\mathbf{R}
\end{aligned}
$$
\]

we see that the rotation matrix is the basis matrix. And of course, \mathbf{R}^{T} is the matrix we use to translate reference coordinates into the new coordinates of the rotated system:

$$
\mathbf{p}_{\text {new }}=\mathbf{R}^{\mathrm{T}} \mathbf{p}_{\text {ref }}
$$

Inverse of a Rotation Matrix is its Transpose

By definition, rotating a position vector only modifies its direction, and never its length. Their lengths are equal:

$$
\begin{aligned}
& \left|\mathbf{p}_{2}\right|=\left|\mathbf{p}_{1}\right| \\
& \left|\mathbf{R p}_{1}\right|=\left|\mathbf{p}_{1}\right| \\
& \left|\mathbf{R p}_{1}\right|^{2}=\left|\mathbf{p}_{1}\right|^{2} \\
& \left(\mathbf{R p}_{1}\right)^{\mathrm{T}} \mathbf{R p}_{2}=\mathbf{p}_{1}^{\mathrm{T}} \mathbf{p}_{1} \\
& \mathbf{p}_{1}{ }^{\mathrm{T}} \mathbf{R}^{\mathrm{T}} \mathbf{R} \mathbf{R}_{1}=\mathbf{p}_{1}^{\mathrm{T}} \mathbf{p}_{1}
\end{aligned}
$$

This must be true for all position vectors, which implies

$$
\mathbf{R}^{\mathrm{T}} \mathbf{R}=\mathbf{I}
$$

and also

$$
\mathbf{R}^{\mathrm{T}}=\mathbf{R}^{-1}
$$

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Rotation_(mathematics)
 ${ }^{2}$ https://en.wikipedia.org/wiki/Complex_number\#Absolute_value_and_argument
 ${ }^{3}$ https://en.wikipedia.org/wiki/Complex_number\#Euler's_formula
 ${ }^{4}$ https://www.mathsisfun.com/algebra/matrix-multiplying.html

[^1]: ${ }^{5}$ https://en.wikipedia.org/wiki/Cartesian_coordinate_system\#In_three_dimensions
 ${ }^{6}$ https://en.wikipedia.org/wiki/Cross_product

[^2]: ${ }^{7}$ https://en.wikipedia.org/wiki/Euler_angles

[^3]: ${ }^{8}$ https://en.wikipedia.org/wiki/List_of_trigonometric_identities\#Angle_sum_and_difference_identities ${ }^{9}$ https://www.mathsisfun.com/algebra/matrix-multiplying.html

[^4]: ${ }^{10}$ https://www.mathsisfun.com/algebra/matrix-inverse.html
 ${ }^{11}$ https://www.mathsisfun.com/algebra/matrix-introduction.html, section "Transposing"

