Tutorial for the application of the Diamonds Scheme

Purpose: The Diamond Scheme eliminates the ambiguity of the Azimuth estimated with the Azimuth Diagram.
Example: 1. The following quantities have to be known: LHA, signs of latitude φ (DR position) and declination δ (celestial object) where "+" means "north" and "-" means "south". Furthermore it needs to be known if P1 is on the lower left (LL) or the upper right side (UR) of the limit line for φ (from azimuth diagram).
2. Find the quadrant in which LHA is located. This qadrant defines one of four rows in the Diamonds Scheme. In the example LHA $=315^{\circ} 56.8^{\prime}$. So it is in the quadrant 270° to 360°, which defines the upper row in the Scheme.
3. Check the signs for the latitude of the DR position and the declination of the celestial object ("+" means "north" and "-" means "south"). Then find the column for which the signs of φ and δ match.

In the example $\varphi=+36^{\circ} 29.5^{\prime}$ (north), so the sign is " + " and $\delta=+20^{\circ} 39.3^{\prime}$ (north) so the sign is also " + ".
Thus the appropriate column is the second column.
4. Locate the rectangular field in the scheme which is in the row from step 2 and the column of step 3 .

Some of these rectangular fields are subdivided into two triangles with different colors, some of them ar not divided and have a single color. If a rectangle is not subdivided, the value for Az can directly be take from the formula given for the appropriate color using Az' as entry. If a rectangle is subdivided, then it needs to be known if PR1 is LL or UR of the appropriate limit line for φ. Then the approprate formular for $A z$ is given by the color of this triangle.

The values of the example lead to the second rectangular field in the upper row. This is a field which is divided into two triangles. The red one is indicated by LL and the green one is indicated by UR. As the intercept P1 in the example is $L L$ of the φ-line, the red triangle is the one to go with. That means the red formula is to be used to calculate the full circle azimuth $A z=180^{\circ}-A z^{\prime}$. So $A z=180^{\circ}-79.9^{\circ}=100.1^{\circ}$.

Summary: Entries: $\quad \mathrm{LHA}=315^{\circ} 56.8^{\prime} \quad \varphi=+$ (north $) \quad \delta=+_{\text {(north })} \quad \mathrm{P} 1: \mathrm{LL} \quad \mathrm{Az}=79.9^{\circ}$
Result: $\quad A z=180^{\circ}-79.9^{\circ}=100.1^{\circ}$ (red formula)
Diamonds Scheme From Quarter Circle to Full Circle Azimuth $\quad A_{z}{ }^{\prime} \rightarrow A_{z}$

