Determing Suns GHA and dec with HO249 modified Table4, step by step

1. Write down the observed object info: DATE: dd-mm-yyyy, and GMT-TIME hh:mm:ss
2. Round the GMT Time to the nearest integral hour.

Before or on xxh 30 m use xx h , After or on xxh 31 m use $\mathrm{xx}+1 \mathrm{~h}$
3. Look in table a for the Year correction with as input above yyyy.

If date is after 29 feb , in a leap year, take the year value with the *.
4. Ad or subtract the hours from table a, to the rounded GMT time \pm hh, to get the OT (Orbit time)

There are now 3 answers possible.
Or: OT is $>00 \mathrm{~h}$ and $<24 \mathrm{~h}$. You can use de DATE and the calculated OT
Or: OT is $<00 \mathrm{~h}$. Ad 24:h to the answer that is the OT. And subtract 1 day from the DATE.
Or: OT is $>24 \mathrm{~h}$. Subtract 24 h from the answer that is the OT. And ad 1 day to the DATE.
5. Go to the main Table4. Find the intersection of Month \rightarrow (horizontal) and the day \downarrow (vertikal).

For instance: E dec

$01^{\circ} 29^{\prime}$	S
$5^{\circ} 29^{\prime}$	
Diff -1	Diff-18

6 . Write down the E and the \pm diff and the N/S dec \pm diff
7. Go to table b first for E (minute ') and then for dec (minute ') correction.

Intersection of diffvalue \rightarrow (horizontal) and the OT time \downarrow (vertikal).
Write down: E1 correction is $\pm \ldots$ dec correction is $\pm \ldots$, ad the dec's, the sum is the dec
8. Go to table c. Find the intersection of multiple of 10 minutes of the GMT-TIME (NOT the OT) \rightarrow (horizontal) and the whole GMT hour \downarrow (vertikal).
9. Write down the E2 correction is . . . ${ }^{\circ}$. ‘
10. Go to table d. Find the remaining GMT minutes and secondes. Interpolate to find.${ }^{\circ}$. . 'value.
11. Write down the E3 correction is . ${ }^{\circ}$. . ‘.
12. Add E and the E1,E2,E3 values, the answer is the GHA.

$\mathrm{E}=\ldots \ldots{ }^{\circ}{ }^{\text {c }} \mathrm{d}= \pm .$.	N/S dec . ${ }^{\circ}$. . ' $\mathrm{d}= \pm .$.
$\mathrm{E} 1= \pm 000^{\circ}$	dec corr $\pm 00^{\circ}$. .
E2 =	+
E3 $=$. ${ }^{\circ} .{ }^{\text {' }}$	N/S dec . ${ }^{\circ}$.. ${ }^{\text {¢ }}$
GHA $=. . .{ }^{\circ} .$.	

[^0]
[^0]: HermanD-2018-12-05

