Using the Modified Martelli Tables

```
2014 January 13 Monday
Assumed Position (GPS) N 35@ 19.4' W 119@ 05.5'
IC -0.3'
Mirror artificial horizon (i.e. no dip corr'n)
Observations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Body & Time ( Z ) & Hs & & IC & \multicolumn{2}{|c|}{Ha} & Refr & \multicolumn{2}{|r|}{Ho} \\
\hline Capella & 02:47:44 & 110 & \(47.0{ }^{\prime}\) & -0.3' & 55응 & 23.4 ' & -0.7' & 550 & ○ 22.7 \\
\hline Deneb & 02:49:40 & 54 응 & \(30.4{ }^{\prime}\) & -0.3' & 27응 & 15.1' & -1.9' & 27 ¢ & - 13. \\
\hline Diphda & 02:51:11 & 63 응 & 23.2' & -0.3' & 31응 & 41.5 & -1.6 & 310 & - 39 \\
\hline
\end{tabular}
```

Body	GHA		Dec		
Capella	750	00.3'	N	46응	00.6'
Deneb	204 ¢	27.5'	N	45응	20.1'
Diphda	144 ㅇ	14.3'	S	170	54.7 '

A time-sight reduces an (optimally East or West azimuthal) observation to the longitude of the observer. As such, we require only one of these bodies, but we will reduce all three observations and see how well we do.

We require four datums, all rounded to the nearest minute:

1. An (accurate) latitude of the observer
2. The declination of the observed body
3. The Greenwich Hour Angle (GHA) of the body
4. The corrected observed altitude (Ho) of the body

The rules are:

1. Put the down the larger of the latitude of the observer or the declination of the body.
2. If Same Name, subtract the smaller from the larger. If Contrary Name, add them.
3. Put the observed Ho below the difference/sum.

Capella

The declination of Capella is larger than the latitude, so we write the declination first, and then the latitude. The declination has the same name as the latitude (both are North), so we find their difference and place it beneath the latitude. The altitude of the observation (Ho) is entered on the line below the difference. Note that we leave room to the left for our work.

Dec	4601
Lat	3519
Diff	1042
Ho	5523

Using Table I, Latitude and Declination, enter to the right of the declination and latitude values their table values.

Dec	4601	$\mathbf{3 4 1 6}$	Table I	
Lat	35	19	$\mathbf{4 1 1 7}$	
Diff	1042			
Ho	55	23		

Now enter Table II, Sum or Difference, with the difference value and extract a time in minutes and seconds (to the nearest tenth of a second). I find it reduces clutter to put this entry to the left of the Diff:

Dec 46013416
Lat $\quad 35194117$
19 42.6 Diff 1042
Table II
Ho 5523

Enter Table III, Angle of Altitude, with the Ho value, and again extract a time denoted in minutes and seconds:

Dec	4601	$\mathbf{3 4 1 6}$	
Lat	35	19	$\mathbf{4 1 1 7}$
Diff	1042		
Ho	55	23	

Table III

Add together the time values extracted from Tables II and III. Remember that sixty seconds carries into the minutes column:

Dec 46013416
Lat 35194117
19 42.6 Diff 1042
257.0 Ho 5523
2239.6

With the sum of the two times, enter Table IV, Auxiliary Logarithm, and put the respondent value beneath the logarithm for latitude (to the right of Diff). Take care to extract the leading digit, which is only printed every five entries in the table.

	Dec	46	01	$\mathbf{3 4 1 6}$	
	Lat	35	19	$\mathbf{4 1 1 7}$	
$\mathbf{1 9 4 2 . 6}$	Diff	1042	$\mathbf{1 . 1 3 1 4}$	Table IV	
$\mathbf{2 5 7 . 0}$	Ho	55	23	$:$	
$\mathbf{2 2} 39.6$-----------------------------					

Add the three logarithms:
Dec 46013416
Lat 35194117
19 42.6 Diff 10421.1314
257.0 Ho 55231.8847
2239.6

Enter Table V, Local Hour Angle, with the sum of the logarithms and extract the local hour angle:

Dec 46013416
Lat 35194117
19 42.6 Diff 10421.1314
$257.0 \quad$ Ho $5523 \mathbf{1 . 8 8 4 7}$ 44 $^{\circ} \mathbf{0 5}^{\prime} \quad$ Local Hour Angle
2239.6

Rather than use rules on how to combine the LHA with the GHA of the body to arrive at the longitude of the observer, I use a small diagram. It is a circle with G at the bottom, denoting Greenwich. To the left of Greenwich are western longitudes and to the right are the eastern longitudes. Per convention, GHA is measured clockwise (0° at G) around the circle (360° is back at G). On this circle, mark the GHA of the body, and the longitude of the assumed position of the observer. The local hour angle will be the arc of the circle between the observer and the body. From the picture it is evident that we should add the LHA to the GHA to obtain the (western) longitude:

44 05' Local Hour Angle
$75^{\circ} 00^{\prime} \quad$ Greenwich Hour Angle
W 119 ${ }^{\circ} \mathbf{0 5}^{\prime} \quad$ Longitude of the observer
Here are the workings for the other two observations:

Diphda		
Lat	3519	$\mathbf{4 1 1 7}$
Dec	1755	$\mathbf{4 7 8 4}$
Sum	53	14
$\mathbf{1 4 6 7 6}$		
Ho	3140	$\mathbf{2 . 3 5 7 7}$
	$\mathbf{2 5}^{\circ} \mathbf{0 9}$	
		LHA

