Scenario :

Actual position (AP) for entry in the app :
$19^{\circ} 50^{\prime} .30^{\prime \prime} \mathrm{S}, 26^{\circ} 17^{\prime} .12^{\prime \prime} \mathrm{W} . \quad\left(19^{\circ} 50^{\prime} .5 \mathrm{~S}, 26^{\circ} 17^{\prime} .2 \mathrm{~W}\right)$.
Date : Monday $12^{\text {th }}$ Feb 2024

DR Position for use in the sight reduction process :
$19^{\circ} 09^{\prime} .0 \mathrm{~S}, 26^{\circ} 29^{\prime} .0 \mathrm{~W}$.

The aim is to obtain your latitude from a midday Sun mer pass. You can use the Planet Location Diagram to see if another heavenly body is available for a second sight at the same time to cross the latitude and give you a position.

The Planet Location Diagram is year specific so you need the 2024 version.
Draw a line across the diagram on the $12^{\text {th }}$ Feb.

The central 12h horizontal line represents the sun's mer pass and is the chart's reference line. Where the moon line crosses the blue $12^{\text {th }}$ Feb line, there is a crescent moon that has its mer pass around 3 hours after the sun's. You don't need its mer pass but the diagram tells you that the moon follows the sun and will be visible around midday when you are shooting the sun. The same applies to Jupiter around 5 hours behind but will probably be too low in the sky for a good sight.

Using the proformas, you firstly need to sort out the sun's mer pass time.

You can now find and shoot the moon's upper limb to give you a crossing position line. It is not brilliant but as it is available it will give you a reasonable position instead of just the latitude. Assume you take the sight a few minutes later at 14:06:18 UT@DR.

After zooming in you can read off $51^{\circ} 54^{\prime} 25^{\prime \prime}$, ie $51^{\circ} 54^{\prime} .4$.

MOON SIGHTDate	Day Date / Month / Year		
	Monday $12^{\text {th }} \mathrm{Fe}$	b 2024	
DR Pos ${ }^{\text {n }}$ Lat	$19^{\circ} 09^{\prime} .0 \mathrm{~S}$		
Long	026²9'.0 W		
Sight time	$\begin{aligned} & \text { hr: } m: s \\ & \text { 14:06:18 } \end{aligned}$		
	MOON	UT @ DR	
Hs	$51^{\circ} 54.4$	UL	
IE	0		
Dip	0		
Ha	$51^{\circ} 54.4$		
First Corr ${ }^{\text {n }}$ +	45.5		
*HP 60.7 Corr $^{\text {n }}$ +	4'.6	UL	
	$-0^{\circ} 30.0$	applies UL ONLY	
Ho	$52^{\circ} 14^{\prime} .5$		
GHA 14 hr	$351^{\circ} 13^{\prime} .1$	*Ent V, Dec ${ }^{\text {n }}$, HP, d	
06 m 18 s	$1^{\circ} 30.2$		
*V +/- +10.6 Corrn	+ 1'.1		
GHA Moon	$352^{\circ} 44^{\prime} .4$		
CP Long -W	$26^{\circ} 44^{\prime} .4$	W	
LHA Moon	326°	(whole number)	
*Dec ${ }^{\text {n }} 14 \mathrm{hr} \mathrm{S}$	$1^{\circ} 12^{\prime} .0$		
*d+/- +17.7 Corr ${ }^{\text {n }}$	+ 1.9	Inc \& Corr 6 mins	
Dec ${ }^{\text {n }}$ Moon S	$1^{\circ} 13^{\prime} .9$	Same / Contrary	
CP Lat	$19^{\circ} \mathrm{S}$	A/S (whole number)	
Hc	$52^{\circ} 08^{\prime} .0$	*Enter d \& Z	
*d+/- +30 Corr ${ }^{\text {n }}$	+ 10'. 0	Table 5	
Hc	$52^{\circ} 18^{\prime} .0$		
*Z	114°		
Zn	66°		
Intercept	3.5 nm	Away ($\mathrm{Hc}>\mathrm{Ho}$)	
		Towards (Hc < Ho)	
Bearing Zn	66°		

The fix at 14:06 UT@DR was :
$19^{\circ} 52^{\prime} .1 \mathrm{~S}, 26^{\circ} 20^{\prime} .3 \mathrm{~W}$.
TeacupNav came out with $19^{\circ} 50^{\prime} .7 \mathrm{~S}, 26^{\circ} 18^{\prime} .1 \mathrm{~W}$.

These compared to the AP of $19^{\circ} 50^{\prime} .5 \mathrm{~S}, 26^{\circ} 17^{\prime} .2 \mathrm{~W}$.

