Calculating Great Circle Courses/Distances (or Reducing Sextant Sights)
DATA INPUTS

3. LatAP ~ LatQ = diffLat

4. $\operatorname{Cos}(R) \quad X \operatorname{Cos}(d i f f L a t)=\operatorname{Sin}(H C)=H C^{\circ}$

5. $\operatorname{Sin}(\mathrm{R}) \div \operatorname{Cos}(\mathrm{Hc})=\operatorname{Sin}(Z)=$ Azimuth

Use \mathbf{N} if Destination (or $G P$) is N of $A P$
Use E if Destination (or GP) is E of AP
Course $360=$
\qquad
Distance $=\left(90^{\circ}-\mathrm{Hc}\right) * 60$
90.0°
\qquad
\qquad

Calculating Great Circle Courses/Distances (or Reducing Sextant Sights)
DATA INPUTS

3. LatAP ~ LatQ = diffLat

4. $\operatorname{Cos}(R) \quad X \operatorname{Cos}(d i f f L a t)=\operatorname{Sin}(H C)=H C^{\circ}$

5. $\operatorname{Sin}(\mathrm{R}) \div \operatorname{Cos}(\mathrm{Hc})=\operatorname{Sin}(Z)=$ Azimuth

Use \mathbf{N} if Destination (or $G P$) is N of $A P$
Use E if Destination (or GP) is E of AP
Course $360=$
\qquad
Distance $=\left(90^{\circ}-\mathrm{Hc}\right) * 60$

\qquad

