How to Use the Mark 1 Navigator's Slide Rule

Bob Goethe

Copyright © 2016 by TEOG Industries Ltd.

TABLE OF CONTENTS

Contents

Introduction 1
§1. Abbreviations 1
Part I: Navigational Mathematics 2
§2. Conversions 2
Coastal Navigation 2
§3. Chart Scales \& Distance 2
§4. Speed, Time and Distance 2
§5. Fuel Consumption 2
§6. Maximum Hull Speed 3
§7. Distance to Visible Horizon 3
§8. Calculating Intermediate Tide Heights 3
§9. Tacking Downwind 3
§10. Distance Off by Two Bearings and the Run Between 3
§11. Distance to Radar Horizon 4
Offshore Navigation 4
§12. Dip. 4
§13. Dip for Short Horizon 4
§14. Scope of a Given Universal Plotting Sheet 4
§15. Sight Reduction/Great Circle Route Calculations 5
§16. Plotting Longitude. 7
§17. Distance by Vertical Angle of Object Beyond the Horizon 7
§18. Compass Variation 7
§19. Trigonometry and Mental Math 8
Part II Using the Mark 1 Navigator's Slide Rule 9
First Things. 9
§20. Can You Learn to Navigate From This Manual? 9
§21. Parts of the Slide Rule 9
§22. Reading the C \& D scales 10
§23. Reading Sines, Cosines and Tangents 11
Using Gauge Points 11
§24. Converting Liters to Gallons 11
§25. Converting Meters to Feet. 13
Multiply and Divide 14
§26. Multiply 14
§27. Chart Scales \& Distance 17
§28. Divide 19
§29. Speed, Time and Distance 21
§30. Fuel Consumption 24
Squares and Square Roots 26
§31. Distance to Visible Horizon 26
§32. Dip 29
§33. Distance by Vertical Angle of Object Beyond the Horizon 29
§34. Maximum Hull Speed 33
Trigonometry 34
§35. Distance Off by Two Bearings and the Run Between 34
§36. Scope of a Given Universal Plotting Sheet 38
§37. Sight Reduction/Great Circle Route Calculations 40
§38. Tacking Downwind 59
§39. Compass Variation 65
§40. Trigonometry and Mental Math 69
Visual Methods 71
§41. Calculating Intermediate Tide Heights 71
§42. Plotting Longitude 75
Index 79
Bibliography 80
About the Author 81

INTRODUCTION

Part I of this manual outlines some of the formulas used in navigational mathematics that are of particular interest to small boat sailors. It is divided into two groupings: formulas of greatest use in coastal navigation, and formulas used in offshore navigation.

Part II details how these formulas may be solved using the Mark 1 Navigator's Slide Rule. This part is divided by slide rule functions (multiply, divide, squares, trig) so that you can gain facility in using the rule in a step-by-step fashion.

§1. Abbreviations

Abbreviations used in various parts of this manual include:
AP assumed position ${ }^{1}$
Az azimuth angle
D distance in nautical miles
Dip Dip is not an abbreviation, but a standard expression in celestial navigation.
Expressed in minutes of arc.
DR Dead reckoning position
GP geographic position
h height of eye above water level, in feet
H height of object (e.g. light of a lighthouse, mountain peak) above water level, in feet
Ho height observed: height measured by sextant, after corrections for dip and refraction have been applied.
Hr time in hours
Hs height measured by sextant, prior to corrections for dip and refraction
S speed in knots
LWL length of vessel at the waterline, in feet
T time in minutes
Zn azimuth
$\gamma \quad$ some angle (pronounced gamma)
$\Delta \quad$ a difference in angle or distance (pronounced delta)
θ some angle (pronounced theta)

[^0]
PART I: NAVIGATIONAL MATHEMATICS

Once you become comfortable with using your slide rule, you may choose to tear out the 4 sheets of paper that comprise Part I, fold them up, and stick them inside your copy of the Nautical Almanac, to give you a concise reminder of things you know how to do.
§2. Conversions

1 knot $=1.852 \mathrm{~km} / \mathrm{hour}$
1 nautical mile $=1.852 \mathrm{~km}$
1 fathom $=6$ feet $=1.829$ meters

1 foot $=0.305$ meters
1 US gallon = 3.785 liters

The Mark 1 Navigator's Slide Rule has two "gauge points" (see §21, §24 and 0) to facilitate the conversion of liters to US gallons, and meters to feet.

Coastal Navigation

§3. Chart Scales \& Distance
Nautical Miles Per Inch = Reciprocal of Chart Scale $\div 72,900$
§4. Speed, Time and Distance

$60 \times D=S \times T$		
$D=\frac{S \times T}{60}$	$T=\frac{60 \times D}{S}$	$S=\frac{60 \times D}{T}$
$D=S \times\left(h r+\left(\frac{T}{60}\right)\right)$		

§5. Fuel Consumption
At 75\% of maximum revolutions on your diesel engine:
Gallons per Hour $=$ Horsepower x 0.055
§6. Maximum Hull Speed
For a displacement, non-planing, hull:
$S=1.34 \times \sqrt{L W L}$
§7. Distance to Visible Horizon
$D=1.17 \times \sqrt{h}$
$D=2.07 \times \sqrt{\text { height of eye in meters }}$
§8. Calculating Intermediate Tide Heights
Use the quarter-tenth rule to construct a sine curve of the tide heights over time.
§9. Tacking Downwind
For given wind/sea conditions, plus sail configuration with your specific hull shape, calculate "distance factor" (DF), "speed factor" (SF) and "time factor" (TF) for each possible course you are considering.
$D F=\frac{\cos (\gamma)}{\cos (\theta)}$
$S F=\frac{S \theta}{S \gamma}$
$T F=\frac{D F}{S F}$

Fill in this table, and select the smallest TF value to determine your ideal course.

Course to Dest. relative to dead downwind γ	Course sailed relative to dead downwind θ	Distance Factor DF	Speed on course θ $\cos (\gamma) / \cos (\theta)$	Speed Factor SF	Time Factor TF	Ideal Course
		1.000		$\mathrm{~S} \theta / \mathrm{S} \gamma$	$\mathrm{DF} / \mathrm{SF}$	
				1.000	1.000	

§10. Distance Off by Two Bearings and the Run Between

§11. Distance to Radar Horizon
$D=1.22 \times \sqrt{h}$
...where h is the height of the antenna in feet.

Offshore Navigation

§12. Dip
The proper, accepted equation for calculating dip is:
Dip $=0.97 \times \sqrt{\mathrm{h}}$
However, many navigators simply use:
Dip $=\sqrt{h}$

§13. Dip for Short Horizon

When taking a sextant sight and finding an island or another vessel lies directly "underneath" the celestial object you are sighting, you must use a "short horizon" calculation for dip if that island/vessel is closer than the natural horizon (see §7). You must know (or estimate) the distance D to the waterline of that island/vessel.

Dip $_{\text {short Horizon }}=(0.416 \times \mathrm{D})+\left(0.566 \times\left(\frac{\mathrm{h}}{\mathrm{D}}\right)\right)$
This short-horizon equation may also be used if you are practicing sextant sights on the shore of a lake, as long as you know the distance to the opposing shore.
§14. Scope of a Given Universal Plotting Sheet
Usable latitude range in minutes $=34 \div \sin ($ Latitude $)$
§15. Sight Reduction/Great Circle Route Calculations
Calculating a great circle route and performing sight reduction on a sextant sight are fundamentally both solutions to the navigational triangle.

When doing sight reduction rather than route planning:

- Substitute the coordinates of the GP of your celestial object for the destination, and...
- Omit Step 6 from the following worksheet.

Great Circle Calculations/Sight Reduction

§16. Plotting Longitude

Using a standard VP-OS plotting sheet, ${ }^{2}$ you may use dividers with the scale printed in the lower right corner. However, you might find it faster to use the scale of 60' to 0' to 60' engraved on the reverse of the Mark 1.

Position the rule along the central latitude line, then rotate the rule from horizontal by an amount equivalent to the latitude of your assumed position.

§17. Distance by Vertical Angle of Object Beyond the Horizon

Correct Hs for index error and dip.
Correct for refraction by:
Estimated Distance $\div 12$.
Take this answer, in minutes, and subtract it from the Hs to determine Ho.
Correct for the curvature of the earth by applying this equation to the charted height of the object:

$$
h-\left(D^{2} \times 0.9\right)=h
$$

With these corrections, apply the standard equation ${ }^{3}$ for Distance by Vertical Angle:

$$
\mathrm{D}=\frac{\mathrm{H} \times 0.565}{\mathrm{Ho}}
$$

If D is significantly different from your estimated D, then repeat the calculations, using the newly derived D as an input for the next iteration.
§18. Compass Variation
$\operatorname{Sin}($ Azimuth $)=\sin ($ declination $) \div \cos$ (latitude)
If you use the:

[^1]- Sun, observe when the lower limb is $2 / 3$ of the sun's diameter above the visible horizon.
- Moon, observe when the upper limb is right on the visible horizon.
- Star/planet, observe when the object is a little more than a sun diameter above the visible horizon.
§19. Trigonometry and Mental Math
Whenever in doubt about which "T" scale to use in reading your answer, convert all your trig functions into numeric values, do your multiplication or division, and get a range for your answer. Then look at the right edge of the various T scales for the short notes that document the value range of each scale.

PART II: USING THE MARK 1 NAVIGATOR'S SLIDE RULE

First Things

§20. Can You Learn to Navigate From This Manual?

No.
This user manual is intended to orient you to using the Mark 1 slide rule to solve common navigational problems. It assumes that you already understand how to navigate, including how to use a sextant to determine your location.

§21. Parts of the Slide Rule

The slide rule is made up of three parts:

- Body
- Slide
- Cursor

There are scales of various sorts, labelled with alphabet letters along the left, together with a short description of what the scale does on the right.

The hash mark under the 1 on the left side of the slide is known as the left index. The hash mark under the 1 on the right side is known as the right index.

There are two gauge points marked immediately beneath the D scale. These are to simplify doing common conversions: liters to gallons and meters to feet. See §24 and 0.

§22. Reading the C \& D scales

The numbers on the C and D scales range from 1 , to 2 , to 3 , etc... on up to another 1 .
Depending on which part of C or D you are looking at, you can read numbers 3 or 4 digits long.

Another way of saying this is that "You can read answers on a slide rule with up to 3 or 4 significant digits."

See below for a result on the right hand end of the scale, where numbers are closer together. Here, we can read an answer to three significant digits. The cursor is positioned over 865.

The numbers are further apart on the left hand side of the scale, and we can read results up to 4 significant digits. In this next illustration, the cursor is positioned over 1522.

It is up you as a user to determine whether a particular sequence means 1.522, 15.22, 152.2 , or 1,522 . That is, you must work out the position of the decimal place on your own.

If you have never used a slide rule before, working out the decimal places can seem daunting. You must do a certain level of basic calculation in your head so you know roughly how big the number is you at which you are going to arrive.

For instance, if you want to calculate:
13.82×11.02
...then you know the result is going to be rather more than 10×10 and rather less than 20 $\times 20$. That is to say, the answer will be more than 100 and less than 400 .

So when you work it out on your slide rule and see that the digits of the answer are 1522, you know you can position the decimal point properly, and that the answer is 152.2.

§23. Reading Sines, Cosines and Tangents

This section is boring. I include it for completeness, but I recommend skipping to the next section to begin using your new slide rule. The best way to sort out scales is to learn by doing.

- Sine values from $\sim 6^{\circ}$ to 90° lie along the top of the S scale.
- Sine values less than $\sim 6^{\circ}$ lie along the top of the ST scale.
- Cosine values from 0° to $\sim 84^{\circ}$ lie along the bottom of the S scale.
- Cosine values greater than $\sim 84^{\circ}$ lie along the bottom of the ST scale.
- On the slide, tangent values from $\sim 6^{\circ}$ to $\sim 89^{\circ}$ are on the T_{2}, T_{3} and T_{4} scales. The equivalent of these scales on the body of the rule are found in T_{1}, T_{5} and T_{6}.
- The one wild card relates to tangent values less than $\sim 6^{\circ}$. On the body, these values are displayed on scale T0. But on the slide, to save space, these values lie along the top part of the ST scale. It is possible to combine sine and tangent values for small angles together because, within the limits of slide rule accuracy, the values are identical.

Using Gauge Points

§24. Converting Liters to Gallons

While you normally cruise in United States waters, this summer you are sailing in Canada. You refill with diesel fuel at a marina, and you get 46.5 liters. How many gallons have you taken on?

Position the left index on the slide above the gauge mark labelled $\ell: \mathrm{USg}$.

Then slide the cursor over until it is over 46.5 on the D scale. Read the gallons on the C scale: 12.28.

If the digits representing the liters you get are less than 385 , such as 153 liters, then slide the right index over the gauge point. And again, slide your cursor over the number of liters on the D scale, and read the gallons on the C scale: 40.4.

You can slide your cursor along any value on the D scale, which now represents liters, and you will get the number of US gallons on the C scale.

Getting the decimal point right. You know that a gallon amounts to approximately $1 / 4^{\text {th }}$ of a liter. You know that $1 / 4^{\text {th }}$ of 100 liters would be 25 gallons. You know that $1 / 4^{\text {th }}$ of 200 liters would be 50 gallons. So $1 / 4^{\text {th }}$ of 153 liters will be between 25 and 50 . So when you see 404 on the C scale, you know that it has got to be 40.4 (as opposed to 4.04 or 404).

§25. Converting Meters to Feet

As you continue your cruise in Canada, you want to convert the depths you see on the chart - which are in meters - into feet. You see on the chart you are in 18 meters of water. What is the depth in feet?

Move the right index over the gauge mark labelled "m:ft".

Move the cursor over the top of 18 on the D scale, and read the answer off the C scale: 59 feet.

If the initial numbers in the meters you want to convert are greater than 305, then slide the left index over the m:ft gauge point. So for instance, to convert 5.5 meters into feet, your slide rule will look like this:

5.5 meters on the D scale equate to 18 feet on the C scale.

Getting the decimal point right. You know that there are approximately 3 feet in every meter. If you were interested in 5 meters rather than 5.5 meters, the answer would be in the neighborhood of $3 \times 5=15$. So when you see 18 as the first two significant digits in your answer you know that the answer is not 1.8 feet, nor is it 180 feet. The answer has got to be 18 feet.

Multiply and Divide

§26. Multiply

To multiply, position the left index over your first number on the D scale. Move the cursor along until it is over the second number on the C scale. The answer will be under the cursor on the D scale.

Multiply 2×3. Answer $=6$

Multiply 3.14×290 Answer $=911$

Sorting out the decimal place. You know that $3 \times 300=900$, so you know that your answer is in the neighborhood of 900 . You know your answer is not 9.11 . Nor is it in the neighborhood of 91.1.

So when you see 911 on the slide rule, you know to position the decimal point at the end. Hence, 911.

Multiply 4,262 $\times 898$
Position the left index over 426. The slide rule is only capable of 3 significant digits here, so you cannot come any closer to your number than 426.

As you look at this, however, you see that you cannot slide the cursor over the top of 898. It extends beyond the right index on the D scale.

When this happens, use the other index on the C scale. That is, move the right index over the top of 426 on the D scale. Then slide the cursor over the top of 898 on the C scale.

The answer is 382.

Sorting out the decimal place. You dig back into your memories of learning to multiply big numbers in grade 5. In your head, you do this.

4,000
$\times \quad 1,000$
4,000,000
So you know your answer is somewhere in the neighborhood of 4 million. Since your slide rule says 382 , you know your answer has to be $3,820,000$.

When you work out this problem using the calculator on your smartphone, you get an answer of $3,827,276$. But when you work this on your Mark 1, using 3 significant digits (a.k.a. slide rule accuracy), you get $3,820,000$.
§27. Chart Scales \& Distance
You charter a Beneteau 35 for that dream-sailing-vacation in the Caribbean. Because it is a charter boat, you are not quite sure what kind of navigation instruments you will find aboard. So you bring along your own parallel rule, dividers, binoculars and hand-bearing compass.

And then as you are going through airport security, your dividers are confiscated, ${ }^{4}$ and when you get to your destination, you discover that indeed the on-board dividers are a total P.O.S. But no fear, you can calculate distances using the scale of inches on your Mark 1 Navigator's Slide Rule. Besides, this will give you an opportunity to practice basic multiplication on your slide rule.

Nautical Miles Per Inch = Reciprocal of Chart Scale $\div 72,900$

So then, if your chart scale is $1: 50,000$, you would do this:
$\mathrm{nm} / \mathrm{inch}=50,000 \div 72,900=0.686 \mathrm{~nm} / \mathrm{inch}$
Position the cursor over 50,000 on the D scale, and center 729000 from the C scale under the cursor. Read the result under the right index of the C scale.

[^2]

Sorting out the decimal place. You know from looking at the slide rule that the significant digits of the answer are 686. But you still need to sort out whether the answer is $0.686,6.86$, or 68.6 . Just looking at $50,000 \div 72,900$, it is not instantly obvious how to position the decimal place.

It is in the nature of division that you get the same answer if you strike off digits equally from the end of the numbers concerned. Hence,
50,000
50,000
500

72,900 will yield the same answer as 72,900 (or rather 729) which will be the same 5 answer as 7.29.

You know that $5 \div 10=0.5$, and that $5 \div 5=1$, so the answer to $5 \div 7.29$ will be somewhere between 0.5 and 1.0. Hence, you know that the decimal point should be 0.686 nm per inch.

So then, if you are trying to sort out the scale of a chart that is 1:500,000, then you can use the same approach to know that the answer will be 6.86 nm per inch.

§28. Divide

3

To figure out 4 on the slide rule, I find it easy if I verbalize it as " 3 divided by 4". In this case, I start by positioning the cursor over the top of the 3 on the D scale.

Then I position the 4 from the C scale over the top of the 3 on the D scale.
Then I slide my cursor over so it is over whichever index on the slide is still over a number on the body and read the answer on the D scale. In this case, the answer is 0.75 .

Sorting out the decimal place. As with multiplication, you are going to need to do some rough mental math to sort out whether the answer is $750,7.5$, or 0.75 .

You are already getting the picture that using a slide rule is going to force you to start doing some rough, order-of-magnitude calculations in your head. This makes using a slide rule harder than using an electronic calculator, to be sure.

But on the plus side, using a slide rule "cultivates in the user an intuition for numerical relationships and scale that people who have used only digital calculators often lack." ${ }^{5}$

The classic example of a failure to think about the numbers you are getting from your digital calculation device (be it a $\$ 5$ hand-held calculator, or a multi-million-dollar computer) is the crash of the Mars Climate Orbiter in 1999. ${ }^{6}$

[^3]Had they had just one engineer with well-developed numerical intuition say, "Wait a second. These numbers don't look right", and then convinced others to take him seriously, they could have saved the $\$ 327$ million that went up in smoke as the spacecraft was incinerated in the Martian atmosphere.

§29. Speed, Time and Distance

The basic calculation for time and distance can be summed up in this street sign:

$60 \times \mathrm{D}=\mathrm{S} \times \mathrm{T}$
Refer back to $\S 1$. Abbreviations to refresh your memory around abbreviations in this manual.

If you remember anything of the algebra you learned back in junior high school, then you know you can reformulate this equation in any of these ways.
$D=\frac{S \times T}{60}$
$\mathrm{T}=\frac{60 \times \mathrm{D}}{\mathrm{S}}$
$S=\frac{60 \times D}{T}$
These equations all work great as long as T is less than an hour. Every instance of multiplying is trying to get time into a decimal form. That is, instead of 42 minutes, you divide by 60 and come up with 0.7 hours.

When solving for distance, where your speed is something like 6.1 knots, and your time is a bit longer, e.g. 5 hours 27 minutes, then this form of the equation may be easier to work with.
$D=S \times\left(h r+\left(\frac{T}{60}\right)\right)$
So D $=6.1 \mathrm{kn} \times 5.45 \mathrm{hr}$
$D=33.2$ nm

If your boat's speed is 5 kn , how far will you go in 56 minutes? Use this equation:
$D=\frac{S \times T}{60}$
I verbalize this as 5 divided by 60 , times 56 . So I start by positioning the cursor over the 5 on the D scale.

Then position 60 on the C scale over the top of the 5 .

You can observe the answer under the right index (0.833 or so)...but that doesn't concern you, since you have another function to do. You want to multiply that answer by 56 , which you do by moving the cursor over the top of the 56 on the D scale.

You observe that the answer is 4.63 nm .
If you work this with a calculator, you will find that the answer is 4.67 , when you round it to get 3 significant digits. Moving the slide or cursor just a fraction too far can introduce errors in the last digit. This is what is called "slide rule accuracy."

With two moves of the cursor, and one move of the slide, this is a problem that (with practice) can be worked as quickly on a slide rule as on an electronic calculator.

Now, imagine that you continue in the same boat at 5 knots. How long will it take to cover 6 nm ?

$$
\begin{aligned}
& \mathrm{T}=\frac{60 \times \mathrm{D}}{\mathrm{~S}} \\
& \mathrm{~T}=\frac{60 \times 6 \mathrm{~nm}}{5 \mathrm{kn}}
\end{aligned}
$$

Again, to help me remember which number to put where, I verbalize this as 60 divided by 5 , times 6 . So I start by positioning my cursor over 60 on the D scale, and then move the 5 over the top of it.

Again, I can read the answer on the D scale underneath the left index...but I don't need to concern myself with that intermediate answer, as I can go straight to multiplying by $6 .$. moving the cursor over the top of the 6 on the C scale.

I read the answer as 72 minutes... or 1 hour 12 minutes.

How fast is a boat cruising if it covers 14 nm in 1 hour 45 minutes?

$$
\begin{aligned}
& S=\frac{60 \times D}{T} \\
& S=\frac{60 \times 14 \mathrm{~nm}}{105 \mathrm{~min}}
\end{aligned}
$$

I verbalize this as 60 divided by 105 , times 14 .
Position the cursor over 60 on the D scale, and move 105 from the C scale over the top of it.

Then slide the cursor over to 14 on the C scale, and read the answer on the D scale: 8 knots.

§30. Fuel Consumption

Diesel engines consume about 1 gallon of fuel per hour for every 18 horsepower used when the engine is run at 75% of its maximum RPM.

Another way of expressing this is to say that you can estimate the gallons of diesel fuel consumed by multiplying horsepower by 0.055 .

Gallons per Hour $=$ Horsepower $\times 0.055$

How much fuel will a 35 hp diesel consume while running 20 hours at 75% of maximum RPM?

GPH $=35 \times 0.055$
Gallons consumed $=1.926$ GPH $\times 20$ hours
Position the right index on the C scale over 35 on the D scale.

Slide the cursor over to 0.055 on the C scale. Read the answer of 1.926 gallons per hour on the D scale.

Sorting out the decimal place. You know that 0.055 is about $1 / 2$ of 0.1 . You can easily figure out that 35×0.1 is 3.5 , and half of that is around 1.5 and change. So when you see an answer of 1926, you know that the answer is near 1.5, hence 1.926.

Finishing up: Move the left index over so it lines up underneath the cursor at 1.926.

You can read the answer as 38.6 gallons.

Sorting out the decimal place. You know that you boat is burning approximately 2 gallons per hour. If you run for 20 hours, you know you are going to burn in the neighborhood of 40 gallons. So when you see an answer of 386 , you know immediately that the answer is neither 3.86, nor 386.0, but rather 38.6

There is another equation that plays a role in ship operations: $\mathrm{cS}^{3}=\mathrm{Cs}^{3}$, to describe how much fuel you WOULD consume (C) at a new speed (S) if you know how much fuel you DO consume now (c) at your current speed (s).

That is to say, if you are consuming 38.6 gallons of diesel to get to your destination at 6 knots, how much would you consume if you kicked your speed up to 9 knots?

This is a useful equation with larger cargo vessels, who can increase their speed by 50%, e.g. from 12 knots to 18 knots, without approaching their hull speed (See $\S 34$).

It is pretty common for a 40 foot cruising sailboat to motor at 6 knots. But increasing that speed by 50% is usually out of the question, since such a vessel might have a hull speed of 8.2 knots. If you had a big enough engine, you COULD push that 40' yacht at 9 knots, but the amount of fuel you would consume would go far beyond what you would expect from $\mathrm{cS}^{3}=\mathrm{Cs}^{3}$.

Squares and Square Roots

§31. Distance to Visible Horizon

It feels like the earth is this vast, table-flat surface that stretches away from us into infinity. But in reality, the earth's surface is curving away from us at a dramatic rate. If your eye is 6 feet above water level, your actual horizon is only 2.87 nm away.

You may be seeing trees or buildings along the shoreline that are further away than 2.87 nm , of course...but you are not seeing the point where those trees/buildings actually meet the waterline. That point is over the horizon from you. The equations that allow you to calculate this are (in feet to the left, and meters to the right):
$D=1.17 \times \sqrt{h}$
$D=2.07 \times \sqrt{\text { height of eye in meters }}$
When I first got my sextant, in the early 1980s, I was living in Japan and sailing my 13' dinghy on Beppu Bay, on the NE coast of Kyushu Island.

I used the equation above to sort out that if my eye was 3' above the waterline, which is was when I sat in the bottom of the cockpit, the horizon was only 2.0 nm away. As long as I could get 2 miles offshore (easy to verify by the other navigational aids that were available) I could take sextant sights that would be as valid as if I were 1,000 miles offshore.

So, to calculate the distance to the horizon, with an eye height of 3 ', using a slide rule, you will use the A scale like this.

Position your cursor over 3 on the A scale. Once you have done this, you can read off the square root of 3 on the D scale on the body.

The square root of 3 is $1.732 \ldots$...though with slide rule accuracy, you may find that last digit is a little different.

One now needs to multiply this by 1.17. So move the left index so it is directly beneath the cursor.

Now slide the cursor over to 1.17 on the C scale, and read the answer off the D scale: 2.025 nm .

So the first use of this equation is in determining if you are far enough offshore to practice your sextant work exactly as if you were way offshore.

But there is another use for this equation. You are offshore at night, approaching the western entrance to the Strait of Juan de Fuca. You are on the lookout for the light at Carmanah Point. Your chart tells you that the light is 182 feet above the high water mark. ${ }^{7}$

If you figure where the horizon is as far as the light is concerned, and figure where the horizon is as far as your eye is concerned, you can know at what distance the Carmanah Point light will peek over the horizon.

Work this out, and you can know that the light will just peek over the horizon when you are 18.65 nm offshore. And a distance plus a bearing will give you a fix.

Calculating this on the slide rule will be a little faster if you think of it as...

$$
D=(\sqrt{6}+\sqrt{182}) \times 1.17
$$

The chart notates the nominal range of the light, i.e. the distance at which it is visible, based on the brightness of the light. As long as the nominal range is greater than the

[^4]geographical range you have just calculated, then you will see the light peeking above the horizon at that calculated distance.

In the case of the light at Carmanah Point, the nominal range is $19 \mathrm{~nm} .$. .so you are fine to see it when you come up on it at 18.65 nm .
§32. Dip
The proper, accepted equation for calculating dip is:
Dip $=0.97 \times \sqrt{h}$
However, many navigators simply use:
Dip $=\sqrt{h}$
If you eye is 8' above water level, the difference between the proper value in the first equation and the value from the second equation is less than 0.1^{\prime} of arc...navigationally insignificant.

Calculate the dip, in minutes of arc, where the height of the eye is 8 feet.
Dip $=\sqrt{8}=2.8^{\prime}$

§33. Distance by Vertical Angle of Object Beyond the Horizon

The scenario this addresses is that you are sailing offshore, and at some point you can see the top of a hill/mountain poking above the horizon. The base of that hill/mountain is below the horizon from you...but you know how high it is by looking at your chart. By measuring the angle from the top of the object to the horizon, and introducing corrections
for refraction and the curvature of the earth, you can come up with a distance from the object. Combine that distance with a bearing, and you have a fix.

This technique is similar to great circle routes/sight reduction, in that it requires a DR position to start with. The more accurate your DR position, the better results you will get from this method.

However, if you suspect you have an unreliable DR, you can run through these equations up to three or four times, each time using the fix from the previous iteration as your starting point. ${ }^{8}$

As part of your pre-voyage planning, I recommend that you look at table 15 in Bowditch $(2002)^{9}$ to get a sense of when your landfall will become visible above the horizon. This will give you a context for establishing a good DR position.

Example, where a 1,000 foot hill is observed from 15.0 miles out, and Hs is $0^{\circ} 37{ }^{\prime}$. The navigator, however, establishes a DR that is 20 miles out. He uses this 20 nm number as the input for these equations.

1. Observe angular height of hill.
2. Correct for IE.
3. Correct for dip.
$0^{\circ} 37.0^{\prime}$
2.3' on the arc

Dip $=0.97 \times \sqrt{h}$
If height of eye $=6$ feet, dip $=2.4^{\prime}$
1,000 miles from the nearest land, I would use Dip $=\sqrt{\mathrm{h}}$ to calculate dip. Closer to shore, I would seek as much accuracy as I could get, hence Dip $=0.97 \times \sqrt{h}$.
4. Correct for refraction.
estimated distance to object $\times \frac{1}{12}$
Where estimated D is (as always) in $n m$, and answer is in angular minutes.

If $D=20$ then correction $=1.7^{\prime}$

[^5]So then...

$0^{\circ} 37.0^{\prime}$	Hs
-2.3^{\prime}	IE
$-\quad 2.4^{\prime}$	Dip
$0^{\circ} 31.3^{\prime}$	Apparent Altitude
-1.7^{\prime}	Correction for refraction
$0^{\circ} 29.6^{\prime}$	Ho

6. Allow for the curvature of the earth.
```
1000 - (20'` 0.9) =
640 feet
```

7. With these corrections in place, use the standard equation for distance off by vertical angle. ${ }^{10}$
$D=(640 \times 0.565) / 29.6$
$D=12.2 \mathrm{~nm}$

Subtract from the height of the object, in feet, the square of the estimated distance in $n m \times 0.9$. That is:
$h-\left(D^{2} \times 0.9\right)=h$
$D=\frac{\mathrm{H} \times 0.565}{\mathrm{Ho}}$
Distance + bearing gives you a fix.

Now, we know (from peeking at the GPS) that your actual distance from the crest of the hill was 15 miles instead of the 20 that you estimated. Your DR was out by 5 nm . This calculation was out by 3.8 nm . Not great, but closer than you were to begin with.

If you redo this calculation, using 12.2 nm as your estimated D , then you would get:

```
037.0' Hs
- 2.3' IE
- 2.4'
Apparent Altitude
- 1.0'0
1000-(12.2 2 * 0.9)=
866 feet
D = (866 * 0.565) / 30.3
D = 16.1 nm
```

After the $2^{\text {nd }}$ iteration of your calculations, you are only 1.1 nm away from agreeing with your GPS.

[^6]If you redo this calculation a $3^{\text {rd }}$ time, you would get:

$0^{\circ} 37.0^{\prime}$	Hs
-2.3^{\prime}	IE
$-\quad 2.4^{\prime}$	Dip
$0^{\circ} 31.3^{\prime}$	Apparent Altitude
-1.3^{\prime}	Correction for refraction
$0^{\circ} 30.0^{\prime}$	Ho
$1000-\left(16.1^{2} \times 0.9\right)=$	
767 feet	
D $=(767 \times 0.565) / 30.0$	
$D=14.4 \mathrm{~nm}$	

So after the $3^{\text {rd }}$ iteration, you are down to 0.6 nm away from your GPS. You could attempt a $4^{\text {th }}$ iteration, but you have moved by this time, and it is probably time to get back on deck and maintain your situational awareness.

You have already worked dip with your slide rule, using a square root, in §32. The only new skill to acquire here is to do a square.

To calculate the squares that you needed for step 6, pick the number on the D scale, and read the square of that number on the A scale.

Illustrating the squaring of estimated D in each case below:
$20.0^{2}=400$
$12.2^{2}=149$
$16.1^{2}=259$

§34. Maximum Hull Speed

Another chance to practice your newfound skill in determining square roots will be to calculate the maximum hull speed of your vessel. This equation describes the approximate limit for hulls that are not planing. It is approximate, as there are differences based on hull shape...but there are some fundamental laws of physics that makes it more true than not.
$S=1.34 \times \sqrt{L W L}$
So if you have a vessel where the LWL (length at the water line) is 35 feet, you determine your hull speed as follows.

Position the cursor over 35 on the A scale. Read the square root on the D scale: 5.92.

Then move the left index on the slide under the cursor, then move the slide over to 1.34 on the C scale, and read the answer on the D scale $=7.93$ knots. No matter how you trim your sails, or how hard you push your diesel, you are not really going to go any faster than this, unless you can get the hull up on a wave and plane.

As to why this equation works, it has to do with the physics of waves. http://tinyurl.com/jxynsw6 ${ }^{11}$ is an interesting article with a good illustrative picture.

A powerful vessel can often tow a smaller vessel at above its hull speed. When this happens, the stern falls into the trough of the wave, the bow kicks up, and additional improvements in speed come only with a disproportionately larger increases in power for ever smaller increases in speed. http://tinyurl.com/jdmxy7f is a picture of a dinghy being towed at above hull speed.

Most cruising sailboats lack the power to go beyond hull speed, unless they are plaining/surfing, or have exceptionally narrow-but-long hulls, such as some catamarans have.

Do note that LWL can vary as you are heeled over. So applying this equation may not be entirely straightforward. But LWL will never exceed LOA (length over all), nor matter how far the vessel is heeled.

Trigonometry

§35. Distance Off by Two Bearings and the Run Between

When reading navigational manuals, you will discover that there are a variety of "easy" rules to remember if you want the distance to an object by two bearings plus distance run:

- Four point fix
- Double the angle on the bow
- $7 / 10$ rule
- $7 / 8$ rule 12

[^7]If you have a slide rule, however, then there is one quick and easy strategy that will work with ANY pair of bearings plus the run between.

Here is the basic scenario, where you are cruising toward a light or other navigational aid:

1. Note the log reading on your knotmeter at the moment you take the first bearing on the light.
2. Carefully maintain your course. (Speed can vary since you are using your electronic knotmeter's log. If you don't have such an instrument, then maintain a constant speed and calculate distance run as outlined in $\$ 29$.)
3. After some time has passed, take another bearing on the object, and note the distance run from your log.
4. Subtract the smaller bearing from the larger, to get the difference.

You will be using this relationship, which looks scarier than it is:

$\frac{\text { distance run }}{\sin (\text { difference between bearing } 1 \text { and bearing 2) }}=\frac{$| distance from object |
| :---: |}{$\sin (\text { bearing } 1)$}$=\frac{$| distance from object |
| :---: |}{when bearing 2 was taken} | $\sin ($ bearing 2$)$ |
| :--- |

Example:

Your vessel observes a light bearing 25°, and after running 9 miles, it bears 64°.
The difference between bearings is $64^{\circ}-25^{\circ}=39^{\circ}$
Position your cursor over 9 on the D scale. Move the slide until 39° on the S scale lies under the cursor.

Now, slide the cursor over to the sine of the first bearing that you took: 25. Read off the D scale that when you took your first bearing, you were 6.05 nm from the light.

[^8]

You cannot simply slide the cursor over the sine of 64°, the second bearing you took, as $\sin \left(64^{\circ}\right)$ extends out beyond the right index on the D scale.

So slide the cursor over the left index on the slide.

Now move the right index of the slide until it is beneath the cursor.

Now, move the cursor until it is over 64°, the second bearing you took, and read the distance off at that point from the D scale: 12.85 nm .

With this data in hand, bearings and distances, you are ready to head down to the navigation station and plot your fixes and the course line you have been following ${ }^{13}$. You can observe in a heartbeat whether your current course will leave at a safe distance when the light is abeam ${ }^{14}$, or if a course change is called for. ${ }^{15}$

§36. Scope of a Given Universal Plotting Sheet

While not quite true, technically, when you configure a VP-OS plotting sheet, you are essentially making Mercator chart for a small area. It is accurate for a particular range of longitude. But if you move outside that range, then you need to create a new sheet and re-establish the width of a degree of longitude.

If you want your plotting sheet to be accurate to within $1 \%,{ }^{16}$ then:
Usable latitude range in minutes $=34 \div \sin ($ Latitude $)$
Imagine you are sailing at 12° latitude.
Step 1: Position the cursor over 34 on the D scale.
Step 2: Move the slide until 12° from the top half of the S scale is underneath the cursor.

[^9]

Step 3: Read the answer on the D scale, immediately under the left index of the C scale, i.e. 163 '.

So a plotting sheet constructed for 12° latitude will have acceptable accuracy for positions $\pm 163^{\prime}$ of latitude from 12°, or $\pm 2^{\circ} 43^{\prime}$, or within a latitude range from $9^{\circ} 17^{\prime}$ to $14^{\circ} 43^{\prime}$.

If you are sailing at 45° of latitude, then:
Step 1: Position the cursor over 34 on the D scale.
Step 2: Move the slide until 45° from the top half of the S scale is underneath the cursor.

Step 3: Read the answer on the D scale, immediately under the left index of the C scale, i.e. 4^{\prime}.

So a plotting sheet constructed with a central latitude of 45° will have acceptable accuracy for positions $\pm 48^{\prime}$ of that latitude, or within a latitude range from $45^{\circ} 48^{\prime}$ to $44^{\circ} 12^{\prime}$. Hence, you will want to construct a new plotting sheet for central latitudes of 44° or 46°.

§37. Sight Reduction/Great Circle Route Calculations

The basic method for solving a spherical triangle was worked out in ancient Greece. Different variations of this solution have been formulated to try and optimize for different tools and scenarios.

The solution that gives the best results when doing calculations with a slide rule was developed in 1920 by Captain L.G. Bygrave ${ }^{17}$ of the Royal Air Force. Plotting a great circle route is precisely the same calculation as you would use for sight reduction of a celestial sight.

On balance, the Bygrave equations will yield more accurate results when calculated on a slide rule than the more usual sine/cosine equations.

Given that this is a 10 " rule, the full range of sine values = scale $S T+$ scale $S=20$ inches. The full range of tangent values $=$ scale $S T+$ scale $T_{2}+$ scale $T_{3}+$ scale $T_{4}=40$ inches.

The Bygrave equations still use cosine values, and like sines, all the solutions need to fit into 20 " of rule length. But a person can dial in his tangent values more precisely, using all 40 of rule length. So at least some of the values you use will be more precisely set than if you are using sine/cosines only.

If you wish to sail from Port Hardy, on the northern tip of Vancouver Island, to Tokyo, your "straight line" course is called a great circle route.
${ }^{17}$ Captain Bygrave's original slide rule was actually cylindrical rather than straight. The advantage of this design was that the scales, if unwound, would be many feet long. It gave much better accuracy than a 10" straight slide rule. You can see a picture of one at https://en.wikipedia.org/wiki/Bygrave slide rule.

Gary LaPook has done extensive research and writing about the Bygrave, and the worksheet in this section for solving the navigational triangle, is entirely derived from Gary's website at http://tinyurl.com/BygraveSlideRule.
I am deeply indebted to Gary for coaching me on how to do great circles/sight reduction with the Bygrave equations.

Such a course looks like a curve on a Mercator chart, as above. But if you get a globe and tape a piece of dental floss from your starting port to your destination, you can visualize that the shortest distance from Port Hardy to Tokyo will indeed take you through the Bearing Sea.

Figuring out what course to steer to be most efficient can be a bit of a challenge, insofar as the compass course is slowly but continuously changing.

You can purchase a gnomonic chart, of course.

But frankly, I have never much cared for gnomonic charts. They are a cool idea, but costly, and big enough to be awkward to use in a 45 foot yacht. Further, depending on your cruise plan, you may need several of them. Big container ships can pick a course and stick with it across an ocean, but cruising sailors tend to be always working compromises between wind/weather/shortest-course. Depending on the location of the North Pacific High, a sailing yacht on its way from Hawaii to Vancouver may go almost as far north as the Aleutian Islands before picking up the westerly breezes that let it head for home. This can lead to an untidy gnomonic chart as you keep replotting great circle courses from locations you never expected to be at.

On the other hand, I can do a great circle calculation in 4 minutes on a slide rule, ${ }^{18}$ once a day, and recalculate an almost ${ }^{19}$ perfect great circle route, from anywhere to anywhere.

Besides, as will be seen below, once you figure out how to calculate a great circle route, you will automatically be able to do sight reduction of any star you wish without having to pack all six volumes (at 12.6 pounds!) of Pub. 229 along. ${ }^{20}$

[^10]Now, as I am planning my trip from Port Hardy to Tokyo, I discover that Dutch Harbor is almost directly on the great circle route I want to follow, so I decide that I will lay over there for a day or two to warm up, wash some clothes, then get a hamburger and fries after weeks of boat food.

Port of Departure: Destination:

Port Hardy, N $50^{\circ} 43.3^{\prime}$, W $127^{\circ} 29.6^{\prime}$ Dutch Harbor, N $53^{\circ} 53.4^{\prime}$, W $166^{\circ} 32.5^{\prime}$

Inputs for calculation: the latitudes of both ports, plus the difference between the longitudes.

Difference | | $166^{\circ} 32.5^{\prime}$ |
| ---: | :--- |
| $-127^{\circ} 29.6^{\prime}$ | |$\quad 39^{\circ} 02.9^{\prime}$ West (i.e. from Departure to Dest is west)

This difference is known as the "meridian angle" and is abbreviated as " H ".
Before going further, it would be good to review how to convert azimuth angles (Az) into azimuths $(\mathrm{Zn}) .{ }^{21}$
${ }^{20}$ https://www.starpath.com/catalog/books/1898.htm
Because of the ease of use, even a slide rule lover like me will still want to keep at least volumes 2 and 3 of Pub. 249 aboard to use with sun/planets plus a number of the bright stars in the sky.

But for those occasional sights of stars that lie outside the range of declinations that Pub. 249 covers, your Mark 1 Navigator's Slide Rule will serve just fine.
${ }^{21}$ William Bligh was a failure as a leader of men, but a superb navigator. You can read his fascinating account of the $3,600 \mathrm{~nm}$ voyage in an open boat that he undertook, with a handful of men, after being set adrift by the mutineers of the Bounty, available at http://tinyurl.com/AzimuthAngles.

One of the interesting things to note is that he never uses azimuths to describe his course. Rather, he will talk in terms of sailing "a N $72^{\circ} \mathrm{W}$ course" (i.e. 288°) or "course $\mathrm{S} 88^{\circ} \mathrm{W}$ " (i.e. 268°).

Azimuth Angle (Az)	Azimuth (Zn)
$\mathrm{N} 10^{\circ} \mathrm{E}$	10°
$\mathrm{S} 10^{\circ} \mathrm{E}$	170°
$\mathrm{S} 10^{\circ} \mathrm{W}$	190°
$\mathrm{N} 10^{\circ} \mathrm{W}$	350°

When doing spherical trigonometry, results for the course to steer are in azimuth angles. One must convert these angles into azimuths in order to get a compass course to steer.

In writing down values, write down values to the nearest minute. Ignore the tenths of a minute. There is no way a slide rule can resolve a number down to the nearest tenth of a minute.

Port Hardy to Dutch Harbor
Great Circle Calculations/Sight Reduction

Write down the data inputs: meridian angle, ${ }^{22}$ your latitude, and the latitude of your destination. You will use the left hand side of the form exclusively, since your meridian angle is less than 90°.

Step 1: $\tan \left(53^{\circ} 53^{\prime}\right) \div \cos \left(39^{\circ} 03\right)=\tan (W)$
Center the slide in the body, and position the cursor over $52^{\circ} 53^{\prime}$ on the T_{3} scale.
There is no way, with slide rule accuracy, you can do anything about that final "point four" minutes. Just come as close as you can.

[^11]Position $\cos \left(39^{\circ} 03^{\prime}\right)$ from the S scale underneath the cursor, in order to divide.

Move the cursor to the right index, and read $60^{\circ} 30^{\prime}$ on the T_{5} scale.

Which of the T-scales should I use to read my answer?

First, if you are doing these calculations once a day while sailing, the values will be in the same general range from one day to the next. Having calculated a great circle route on one day, you already know roughly what to expect when you recalculate the next day.

If you are starting this particular problem cold, however, you can get a sense of the range of your final answer by observing the numeric values of $\tan \left(53^{\circ} 53^{\prime}\right)$ and $\cos \left(39^{\circ} 03\right)$.

Note the value of $\tan \left(53^{\circ} 53^{\prime}\right)$, and also look at the right end of the T_{3} scale.

You see that scale T_{3} deals in values of 1.0 to 10. So the tangent of this angle is 1.37 .
Look at the value of $\cos \left(39^{\circ} 03^{\prime}\right)$, and observe the cosine values on the right edge of the scale. Scale S deals in cosine values of 1 to 0.1 .

So the value of $\cos \left(39^{\circ} 03^{\prime}\right)$ is 0.776 . This means that the equation of step 1 may be expressed as: $1.37 \div 0.776$. I can know at a glance that .776 is going to go into 1.37 something in the neighborhood of 2 times.

Since scale T_{5} deals in values from 1 to 10, I know that my answer of 2-ish needs to be read on scale T_{6}.

Once you get a feel for the kinds of answers that are in-range, you can multiply and divide cosines and tangents without concern for the values on the C or D scales.

Section $\S 40$ reviews the technique for doing mental math with trig functions.
Step 2: $\left(89^{\circ} 60^{\prime}-50^{\circ} 43^{\prime}\right)+60^{\circ} 30^{\prime}=99^{\circ} 47^{\prime}$

Step 3: $179^{\circ} 60^{\prime}-99^{\circ} 47^{\prime}=80^{\circ} 30^{\prime}$
Step 4: $\left[\cos \left(60^{\circ} 30^{\prime}\right) \div \cos \left(80^{\circ} 13^{\prime}\right)\right]{ }^{*} \tan \left(39^{\circ} 03^{\prime}\right)=\tan (\mathrm{Az})$
Center the slide, then position the cursor over $\cos \left(60^{\circ} 30^{\prime}\right)$ on the S scale. Move $\cos \left(80^{\circ}\right.$ 13^{\prime}) on the S scale beneath the cursor. This performs your division.

You are ready to go straight to multiplying now, so move the cursor over the top of $\tan \left(39^{\circ} 03^{\prime}\right)$ on the T_{2} scale...except you can't quite do that now. Tan(39) extends out too far to the right. So move the cursor to the left index, then move the right index on the slide to the cursor, and THEN multiply by $\tan \left(39^{\circ} 03^{\prime}\right)$ from the T_{3} scale, and read your answer on the T_{5} scale:
$A z=67^{\circ} 18^{\prime 2} .{ }^{23}$

[^12]

Step 5: Center your slide, and position the cursor over $\cos \left(67^{\circ} 18^{\prime}\right)$ on the S scale. Then move the right index on the slide under the cursor, and multiply by moving your cursor over $\tan \left(80^{\circ} 13^{\prime}\right)$

$\mathrm{Hc}=65^{\circ} 56^{\prime}$
$\mathrm{Zn}=292^{\circ} 42^{\prime}$
Step 6: $89^{\circ} 60^{\prime}-65^{\circ} 56^{\prime}=24^{\circ} 04^{\prime}$. Convert this to decimal degress $=24.1^{\circ}$
Multiply by 60 , and get $1,446 \mathrm{~nm}$.

How accurate are these results? Are the differences navigationally significant?

A good way to quickly compare your slide rule results with true values is from http://www.bobgoethe.com/ResultChecker.htm.

When doing a great circle calculation, enter your destination as though it were the GP of a celestial body, converting its longitude into GHA and equating its latitude with declination.

If you hunt around on the web, you can find Henning's original web page. However, he includes a correction for refraction - useful enough if you have a sextant in your hand, but merely throws your numbers off if you are trying to check your slide-rule work. The version of this page at www.BobGoethe.com/ResultChecker.htm has been tweaked/optimized for slide rule result checking.

Zn , azimuth, the course to steer your boat, differs by $0^{\circ} 15$ ' between slide rule and computer calculation for this particular problem. Given that small boats have a tough time steering any smaller than $\pm 5^{\circ}$, obsessing over azimuth accuracy of 15^{\prime} is taking months off your life for no gain at all.

So no, the azimuth difference is not navigationally significant in this specific solution.
Hc differs by 17.4 nm between slide rule and computer calculation (this is the "Intercept"). This is not a very large error when the total distance is $1,428 \mathrm{~nm}$.

The distance difference is also not navigationally significant in this specific solution.

Special Rules

The accuracy of this method breaks down if the scenario you are solving for involves any cosines or tangents greater than 89°, tangents of angles less than 1°, or cosines of angles less than 10°.

There are special rules you can follow to cope with these limitations. ${ }^{24}$ But in these cases, I think it is time to fire up the GPS app on your Android Phone, love of traditional navigation notwithstanding.

One more example will give you a chance to practice a bit more with your slide rule, as well as to illustrate the sight reduction of a star that has an meridian angle of more than 90°.

Schedar is a star in the circumpolar constellation Cassiopeia, and so is visible from midnorth latitudes all night. When you are looking south, no celestial object has a meridian angle of more than 90°. That is where your horizon is. But in looking at circumpolar stars, you can see a group of stars that clusters about the north pole through a full 360°. So then, the meridian angle of circumpolar stars could be anything up to east or west 180°.

This star has a declination (which you will use as input value "d" in the work form) of $\mathrm{N} 56^{\circ}$ 37.0^{\prime}. The sidereal hour angle ("SHA" - equivalent to the longitude of a destination when doing a great circle course calculation) could be anything, depending on the time and date when you sight it.

For purposes of this example, we will assume that your vessel is still at Port Hardy, and that the SHA is such that the meridian angle from your location is 120° east.

[^13]Sight of the star Schedar from Port Hardy
Great Circle Calculations/Sight Reduction

Since you are dealing with a meridian angle greater than 90°, you will use the substitutions from the right side of the form.

With a meridian angle of $120^{\circ} \mathrm{E}, \mathrm{H}$ becomes $60^{\circ} \mathrm{E}$.
Step 1: $\tan \left(56^{\circ} 37^{\prime}\right) \div \cos \left(60^{\circ}\right)=\tan (\mathrm{W})$
Center the slide. Position the cursor over $\tan \left(56^{\circ} 37^{\prime}\right)$ on the T_{3} scale.

Position $\cos \left(60^{\circ}\right)$ on the S scale directly beneath the cursor.

Move the cursor over the right index. Read the answer off the T_{5} scale.

Step 2: Since you have been dealing in a meridian angle greater than 90°, complete step 2 from the right hand column. I find that doing minus minus values is a bit confusing.

What I did was to add L and W together $=122^{\circ} 29^{\prime}$, and then subtract $90^{\circ} 00^{\prime}$ from that. This is particularly suitable in that I am to ignore the sign of " X " in step 3.

Step 3 is simple. Just enter $32^{\circ} 29^{\prime}$.
Step 4: $\left[\cos \left(71^{\circ} 46^{\prime}\right) \div \cos \left(32^{\circ} 29^{\prime}\right)\right]{ }^{*} \tan \left(60^{\circ} 00^{\prime}\right)=\tan (\mathrm{Az})$
Position your cursor over $\cos \left(71^{\circ} 46^{\prime}\right)$ on the bottom half of the S scale, then move the slide until $\cos \left(32^{\circ} 29^{\prime}\right)$ on the S scale is beneath the cursor. This will set up the division portion of step 4.

You cannot simply slide the cursor until it is over $\tan \left(60^{\circ}\right)$. You must first move the slide until the left index is under the cursor.

Now slide the cursor over the top of $\tan \left(60^{\circ}\right)$ on the T_{3} scale. Read the answer of $32^{\circ} 43^{\prime}$ on the T_{5} scale.

Step 5: $\cos \left(32^{\circ} 43^{\prime}\right){ }^{*} \tan \left(32^{\circ} 29^{\prime}\right)=\tan (\mathrm{Hc})$
Center the slide. Move the cursor over the top of $\cos \left(32^{\circ} 43^{\prime}\right)$ on the S scale.

Move the right index under the cursor. Move the cursor until it is over $\tan \left(32^{\circ} 29^{\prime}\right)$ on the T_{2} scale. Read the answer of $28^{\circ} 09^{\prime}$ off the T_{1} scale.

How accurate are these results? Are the differences navigationally significant?

Whoa!! This is too good. According to this, the slide rule's intercept for this problem is only 1.6 nm from the computer-calculated value, and the azimuth agrees to the nearest minute. I have seldom seen a slide rule deliver results this accurate for complex, multistep calculations.

What can we say about this?

- I was lucky when I worked out this sample problem. ${ }^{25}$ I could easily have selected an answer that was different by 4 or 5 minutes just as a result of how 1 lined up the slide or cursor.
- This rather validates that I and my graphics software, together, were able to create correct trig scales for the Mark $1 .{ }^{26}$
- A slide rule will give more accurate results on some problems than on others. There are certain ranges of values where a slide rule can hardly be used, while other ranges exist where it is inherently more accurate. This particular navigation problem appears to lie in a sweet spot for the 10" slide rule. ${ }^{27}$

[^14]- I am lucky, to be sure, but damn, I'm also pretty good. I think it is time to leave off working on this user manual for now, go to the gym, pump some iron, and bask in the glow of a perfect azimuth value for the star Schedar. ${ }^{28}$

§38. Tacking Downwind

When your destination is almost directly downwind of you, ${ }^{29}$ you notice that if you point a bit higher, you go faster. You know that you are sailing a little further, but your instinct is that by sailing faster, though a bit further, you will arrive at your destination more quickly than if you sailed the more direct course.

This instinct tells you that there is a relationship between distance travelled, speed, and time. And indeed, with years of experience, a skipper will learn the optimal downwind tacking angle to use for his boat in different wind and sea conditions. But Arvel ${ }^{30}$ Gentry published an important article in 1970^{31} in which he outlined the math that will allow you to sail downwind efficiently without waiting all those years. He gives, if you will, the math that supports your instincts. ${ }^{32}$

Gentry, who died in 2015, published a number of articles over a period of years in which he brought his experience in aircraft design to bear on areas of interest to sailors.

As of 05 March 2016, you can download a number of these articles ${ }^{33}$ from http://arvelgentry.jimdo.com/ and http://tinyurl.com/AG-Articles .

Assume that the wind is coming from 205°. So if you are sailing at 25°, you are sailing dead downwind.

Assume the great circle route to your destination ${ }^{34}$ is 35°. So then, if you are sailing 10° higher than dead downwind, you are precisely on course for your destination. But will you get there faster if you sail 20° higher, or even 30° higher than dead downwind?
you have the ability to modify the JavaScript of a web page, you too can set up default values for yourself.
${ }^{28}$ Getting a result this accurate has never happened to me before, and will never happen again. If I don't enjoy the moment now, I will have lost an opportunity.
${ }^{29}$ It is seldom exactly downwind. At the end of this section, I will explain how this math works to take care of this rare scenario as well.
${ }^{30}$...an old Welsh name.
${ }^{31}$ He was, at the time, Chief of Applied Research at Douglas Aircraft. By 1986, he was head of Boeing's aerodynamics computing department, and in his spare time was helping to design a winged keel for one of the America's Cup challengers.
${ }^{32} \mathrm{http}: / /$ tinyurl.com/TackingDownwind (retrieved 05 March 2016)
${ }^{33}$... with the blessing of his daughter, who is more interested in seeing her father's legacy carried ${ }_{34}$ than in protecting copyrights. http://tinyurl.com/KimGentry (retrieved 05 March 2016)
${ }^{34}$ or the rhumb line course, if you are doing coastal sailing.

$$
\left.\begin{array}{rl}
\gamma= & \text { angle between line to destination and } \\
& \text { dead downwind direction } \\
\theta= & \text { downwind tacking angle } \\
\mathrm{D}= & \text { distance to mark without tacking } \\
\mathrm{D} \theta= & \mathrm{D} 1+\mathrm{D} 2, \text { i.e. distance to destination } \\
& \text { with downwind tacking (further than } \mathrm{D} \\
& \text { but potentially faster to complete) }
\end{array}\right\} \begin{aligned}
2 \theta= & \text { course to follow after gybe (= twice } \theta) \\
\mathrm{S} \gamma= & \text { speed you make on direct course to } \\
& \text { destination, at angle } \gamma \text { to dead downwind }
\end{aligned}
$$

Stating the question more generally, you know γ. You want to know the optimum angle for θ which will get you to your destination the very fastest. You don't care if D θ is further than D. You care about getting home quick.

The complication in this is that the optimum answer will be different for different hull shapes and sail combinations, and also for different sea states and wind speeds. So then, you must begin by observing the actual speed you make while following different courses. That is to say, it will take several minutes to collect the data before you can calculate your optimum course.

Then, you need a "distance factor" (DF) and a "speed factor" (SF) that you can relate a "time factor" (TF). These are:
$\mathrm{DF}=\frac{\cos (\gamma)}{\cos (\theta)} \quad \mathrm{SF}=\frac{\mathrm{S} \theta}{\mathrm{S} \gamma} \quad \mathrm{TF}=\frac{\mathrm{DF}}{\mathrm{SF}}$
The time factor represents the fraction of time it will take to sail on the given course θ compared to the baseline time it will take to sail on course γ. If the $\mathrm{TF}=0.750$, then it means that sailing course θ will take 75% of the time it would take if you sailed on course γ. Another way of saying is is that course θ is 25% faster under these conditions.

Example with a TEOG 40 foot sloop, where γ is 10° higher than dead downwind.

That is, if the wind is coming from due south, 180°, dead downwind would be 0°. Pointing 10° closer to the wind than 0° would be sailing at 10° (or giving equal answers, sailing at 350° - but we are not interested in true bearings; only bearings relative to dead downwind).

Conditions: $\mathbf{4}$ knot wind; small waves with glassy crests; no breaking waves.

Course to Dest. relative to dead downwind γ	Course sailed relative to dead downwind θ	Distance Factor DF	Speed on course θ $\frac{\cos (\gamma)}{\cos (\theta)}$	Speed Factor SF	Time Factor TF	Ideal Course
10	10	1.000	$\mathrm{S} \theta$ (i.e. $\mathrm{S} \gamma)$	$\frac{\mathrm{DF}}{\mathrm{SF}}$		
		1.000	1.000			
	20	1.048	2.3	1.150	0.911	
	30	1.137	2.9	1.450	0.784	
	40	1.286	3.4	1.700	0.756	\star
	50	1.532	3.8	1.900	0.806	

Let's unpack this. If you are sailing directly at your destination, pointing 10° higher than dead downwind, your speed is 2.2 knots. Of course, at that angle $\cos (\gamma) / \cos (\theta)=$ $\cos \left(10^{\circ}\right) / \cos \left(10^{\circ}\right)=1$. You will find that your speed factor and time factor are both 1. This is your baseline result. You want to see if you can do better than this.

The DF for 20° is $\cos \left(10^{\circ}\right) \div \cos \left(20^{\circ}\right)=1.048$
Position your cursor over $\cos \left(10^{\circ}\right)$.

Now move the hash mark for $\cos \left(20^{\circ}\right)$ underneath the cursor, to do a division.

Read the answer on the D scale, under the left index on the C scale.

Do this for the other values of θ you want to check: $30^{\circ}, 40^{\circ}$, and 50°.
Now, settle your craft in for a few minutes on each course, starting at 10° (i.e. γ, pointing directly at your destination), $20^{\circ}, 30^{\circ}, 40^{\circ}$, and 50°. You will be using the masthead wind vane and your instruments to ensure that you are on the proper course. In each case, allow a few minutes to pass for your speed to settle down. In 4 knots of wind, your speeds should be quite consistent.

As you move into higher winds, and bigger waves, your speed will vary more from moment to moment. ${ }^{35}$ Do your best to get an average speed to the nearest tenth of a knot.

Now that you have the first four columns of your chart for 4 knots of wind filled in, you can calculate SF. This is a straightforward division. When $\theta=20^{\circ}$ and your speed is 2.6 kn ,

[^15]then $\mathrm{SF}=2.6 \mathrm{kn} / 2.2 \mathrm{kn}$. Position 2.2 on C over 2.6 on D , and read the answer on D under the left index of $\mathrm{C}=1.182$.

Carry this on to calculate the speed factor values for the other course values you want to evaluate.

Now, fill in the time factor column, where TF $=$ DF/SF. When $\theta=20^{\circ}$, this is $1.048 / 1.182=$ 0.887 .

Position the cursor on 1.048 on the D scale, and position 1.182 on the C scale under the cursor, and read the answer under the right index of the C scale.

The smaller the time factor value, the quicker you will arrive at your destination. In this case, sailing 40° higher than dead downwind will get you to your destination in 74.5% the time it would take you if you sailed directly for your destination.

You should understand how to work the slide rule on this problem, but you may be struggling to wrap your head around this whole concept of calculating tacking downwind angles. It may help to use this same TEOG 40 example at some different wind speeds.

Conditions: 8 knot wind; scattered whitecaps.

Course to Dest. relative to dead downwind γ	Course sailed relative to dead downwind θ	Distance Factor DF	Speed on course θ $\frac{\cos (\gamma)}{\cos (\theta)}$	Speed Factor SF	Time Factor TF	Ideal Course
10	10	1.000	4.3 (i.e. $\mathrm{S} \gamma$)	1.000	1.000	
	20	1.048	5.3	1.233	0.850	
	30	1.137	6.0	1.395	0.815	\star
	40	1.286	6.7	1.558	0.825	
	50	1.532	7.0	1.628	0.941	

Conditions: 12 knot wind; numerous whitecaps.

Course to Dest. relative to dead downwind γ	Course sailed relative to dead downwind θ	Distance Factor DF	Speed on course θ $\frac{\cos (\gamma)}{\cos (\theta)}$	Speed Factor SF	Time Factor TF	Ideal Course
10	10	1.000	6.3 (i.e. $S \gamma)$	$\underline{S \theta}$	$\frac{\mathrm{DF}}{\mathrm{SF}}$	
	20	1.000	1.000			
	30	1.137	7.3	1.233	0.904	\star
	40	1.286	8.8	1.395	0.918	
	50	1.532	8.2	1.558	0.988	
			1.628	1.077		

Conditions: 16 knot wind; 7 foot waves, ubiquitous whitecaps, some spray.

Course to Dest. relative to dead downwind γ	Course sailed relative to dead downwind θ	Distance Factor DF	Speed on course θ $\frac{\cos (\gamma)}{\cos (\theta)}$	Speed Factor SF	Time Factor TF	Ideal Course
10	10	1.000	7.9 (i.e. $\mathrm{S} \gamma)$	1.000	1.000	\star
	20	1.048	8.0	1.013	1.035	
	30	1.137	8.2	1.038	1.096	
	40	1.286	8.2	1.038	1.239	
	50	1.532	8.2	1.038	1.476	

What you are observing here is that when winds are light, and you are nowhere near your maximum hull speed, pointing higher than your rhumb-line course by 30° or 40° could be a good idea.

But as your boatspeed goes up, progressively closer and closer to your maximum hullspeed, then your ideal course moves closer to pointing directly at your destination. With this particular TEOG 40, once the wind gets to 16 knots, going faster through the water really isn't an option. 8.2 knots is as fast as you are going to go. ${ }^{36}$ Your best plan is to point directly at your destination.

Conditions: $\mathbf{2 4}$ knot wind; 12 foot waves, the boat is surfing with speeds up to 12 knots.
All these equations go right out the window when you start to surf. Hang onto your hat and have fun!

Use the same equations on those occasions when your destination is dead downwind. Just use $\gamma=0^{\circ}$, and work the rest of your table as normal.

Inshore racing sailors would do well to start a notebook and gather data for a wide range of wind speeds and sea conditions, the better to know how their boat and sails perform.

§39. Compass Variation

Creating a compass deviation card for a vessel is something everybody talks about but almost nobody does. Let us suppose that you are among this majority who has never measured your deviation, and that while you are sailing from Dutch Harbor to Tokyo, you decide it is a good time to begin creating a deviation card for yourself. ${ }^{37}$

The only true and utterly reliable way ${ }^{38}$ to determine the magnetic delta (variation + deviation) of your steering compass, ${ }^{39}$ at your current location and on your current course,

[^16]is by comparing your compass reading to the azimuth to a celestial object. You can use your Nautical Almanac plus Pub. 249 to determine the azimuth of any of these "lighthouses in the sky", of course. But there is an easier, quicker way.

You already know that taking a meridian sight at local noon gives you a reliable measure of your latitude. Part of what makes this method useful is that although the sun is moving quickly from east to west at noon, its altitude is changing very slowly indeed. So you can get a very reliable sextant altitude.

By the same token, near sunrise or sunset, the sun's altitude is changing very rapidly, but its azimuth change from east to west is very slow. So you can get a very reliable read on your compass.

When the center of the sun is on the celestial horizon - which, due to refraction is when the lower limb of the sun is $2 / 3$ of its diameter above the visible horizon ${ }^{40}$ - you can calculate the azimuth with the equation:
$\operatorname{Sin}($ Azimuth $)=\sin ($ declination $) \div \cos ($ latitude $)$
You don't need to include anything in this equation about the altitude of the sun, or any sort of corrections. If the center of the sun is on the celestial horizon, you have already eliminated the effect of refraction. Hence the true altitude at that moment $=0^{\circ}$.

With the azimuth from this equation, turn your sextant on its side to measure the angle from the center of the sun to the bow (or center of the stern) of the boat, and determine the delta (i.e. the difference) between your steering compass and true bearings. Make this a part of your morning/evening routine, along with taking sextant observations during nautical twilight and you can dial in your compass delta to a fare-thee-well. Once you get back home, you can turn this data into a proper deviation card.

To make this work, you need your own latitude. You also need, from the Nautical Almanac, the declination of the sun.

For example: The DR position of your vessel is $51^{\circ} 24.6^{\prime} \mathrm{N}, 179^{\circ} 00.0^{\prime} \mathrm{E}$. Your steering compass indicates your course as being 252°. The declination of the sun is $19^{\circ} 40.4^{\prime} \mathrm{N}$. You want the azimuth of the sun.

Rules: All values are treated as positive, whether or not latitude and declination are of contrary name. The azimuth is given the prefix of E if the sun is rising; W if it is setting. It is given the suffix N if the declination is north; S if the declination is south.

Center the slide, then position the cursor over the top of $\sin \left(19^{\circ} 40^{\prime}\right)$.

[^17]| | igator's Slide Rule
 50^{\prime} 2°
 2°
 11111111111 |
| :---: | :---: |
| | |
| | |
| | |

Position $\cos \left(51^{\circ} 25^{\prime}\right)$ beneath the cursor to divide.

Position the cursor over the top of the right index, which yields the answer to this problem in division, then center the slide. Read the azimuth of the sun on the top of the S scale: W $32^{\circ} 40^{\prime} \mathrm{N}$.

Azimuth $=\mathrm{W} 32^{\circ} 40^{\prime} \mathrm{N}$, which is the same as...
Azimuth $=270^{\circ}+32^{\circ} 40^{\prime}$, which is the same as...
Azimuth $=302^{\circ} 40^{\prime}$... which we will round to $303^{\circ}{ }^{41}$
If you had a compass delta of 0° then the bearing difference from the center of the sun to your bow (which is on course 252°) would be $303^{\circ}-252^{\circ}=51^{\circ}$.

But when you use your sextant to measure from the bow to the center of the sun, you get an angle of 53°. That is to say, your compass delta is 2° west. Write this down in your log, together with the DR position of your vessel.

Then once you get back on dry land, go to this web address:

http://www.ngdc.noaa.gov/geomag-web/

...enter your DR position of $51^{\circ} 24.6^{\prime} \mathrm{N}, 179^{\circ} 00.0^{\prime} \mathrm{E}$, and you will discover that at that location on the face of the earth, the magnetic variation is 3.05° east ${ }^{42}$ which we will round to 3° east.

Compass $\Delta: \quad 2^{\circ}$ west
Variation: $\quad 3^{\circ}$ east
Deviation: $\quad 5^{\circ}$ west

[^18]Go through this same process as your vessel is on different magnetic courses over the course of your cruise, and you will eventually build up the data for a useful deviation card. See http://www.cockpitcards.co.uk/page15.htm.

While using the sun is the classic way to determine the magnetic variation at your DR, you can also use the moon: measure with your sextant from the moon to the bow of the boat when the upper limb of the moon is just touching the visible horizon.

If you wish to use a star or planet to check your magnetic variation, then do your sextant observation when the object is just a little bit more than one sun diameter above the visible horizon.

Looking back over what we have done, once we knew the magnetic variation, we knew everything but the declination. Once we have worked out a full declination card, we can of course then solve for the variation wherever we are in the earth.

§40. Trigonometry and Mental Math

Generally, when using a slide rule, you do some quick-and-dirty calculation to come up with the general scope of the solution to your problem. This lets you know where to put the decimal place.

But if you have no idea the scope of an answer, you have a problem. After all, if your slide is in this position:

...then when the answer is a tangent value, it could be:

- $1^{\circ} 00^{\prime}$ from the T_{0} scale
- $9^{\circ} 56^{\prime}$ from the T_{1} scale
- $60^{\circ} 12^{\prime}$ from the T_{5} scale, or...
- $86^{\circ} 42^{\prime}$ from the T_{6} scale.

As you are aware, the Mark 1 lets you work with trigonometric values quickly and directly, without needing to concern yourself with the numeric values into which they translate. But if you get confused about the scope of your answer, then a bit more understanding will be helpful.

Sine

Using the ST scale from $0^{\circ} 34^{\prime}$ to $5^{\circ} 44^{\prime}=$ sine values from 0.01 to 0.1 .
Using the S scale from $5^{\circ} 44^{\prime}$ to $90^{\circ} 00^{\prime}=$ sine values from 0.1 to 1 .

Cosine

Using the S scale from $0^{\circ} 00^{\prime}$ to $84^{\circ} 16^{\prime}=$ cosine values from 1 to 0.1 .
Using the ST scale from $84^{\circ} 16^{\prime}$ to $89^{\circ} 26^{\prime}=$ cosine values from 0.1 to 0.01 .

Tangent

Using the To/ST scales ${ }^{43}$ from $0^{\circ} 34^{\prime}$ to $5^{\circ} 44^{\prime}=$ tangent values from 0.01 to $0.1 .^{44}$
Using the $\mathrm{T}_{2} / \mathrm{T}_{5}$ scales ${ }^{45}$ from $5^{\circ} 44^{\prime}$ to $45^{\circ} 00=$ tangent values from 0.1 to 1 .
Using the T_{3} / T_{6} scales from $45^{\circ} 00^{\prime}$ to $84^{\circ} 17^{\prime}=$ tangent values from 1 to 10 .
Using the $\mathrm{T}_{1} / \mathrm{T}_{4}$ scales from $84^{\circ} 17^{\prime}$ to $89^{\circ} 26^{\prime}=$ tangent values from 10 to 100

Putting It All Together

If you see an equation that is:
$\sin \left(32^{\circ}\right) \times \cos \left(70^{\circ}\right)=\tan (\theta)$
...and you simply have no foggy clue as to even the general value that θ represents, then restate the equation in terms of the trig values.

[^19]$\boldsymbol{\operatorname { s i n }}\left(\mathbf{3 2}{ }^{\circ}\right) \times \boldsymbol{\operatorname { c o s }}\left(70^{\circ}\right)$ is an equivalent equation to $\mathbf{0 . 5 3 0} \times \mathbf{0 . 3 4 2}$.
So you work out in your head that $0.530 \cong 1 / 2$. You figure that $1 / 2$ of 0.34 is 0.17 . You know that all tangent values from 0.1 to 1 lie along the $\mathrm{T}_{2} / \mathrm{T}_{5}$ scales. So if $\tan (\theta)$ is your answer, and it is close to 0.17 , then θ will be $10^{\circ} 16^{\prime}$.

As a memory aid, the range of each trig scale is documented on the rule at the right edge of the scale.

Visual Methods

§41. Calculating Intermediate Tide Heights

It is possible to make surprisingly accurate tide predictions using the scale of inches on the backside of the Mark 1 Navigator's Slide Rule, a pencil, and a piece of paper.

Even a quick-and-dirty graph may be sufficient ${ }^{46}$ to calculate how much anchor rode you need to veer in order to sleep soundly that night.

Step 1: From the tide book, note the times and heights of the low and high tides during the time period that concerns you.

[^20]Step 2: Build a graph that is of a proper scale to capture these heights and times.
For instance, assume there was a low tide of 2.6 feet at 1615 , and it is 1800 as you are cruising into your anchorage. You want to find a spot to anchor, and veer enough rode that you will neither touch bottom during the night, nor drag anchor. High tide will be 10.2 feet at 2345 , followed by a low tide of 1.3 feet at 0530 .

Here is what you basic graph looks like.

Step 3: Mark the lines at the half and quarter distances. Notice that the scale of inches on your Mark 1 is in tenths of an inch rather than quarters/eighths/etc. This will make it a bit easier for you to figure out the length of a quarter line. For instance, if you figure your line is 5.35 " long, you can do division with your slide rule to sort out that $1 / 4$ of that is 1.34 ".

Step 4: Take $1 / 10^{\text {th }}$ of the tidal range, and make a mark above/below your $1 / 4$ and $3 / 4$ marks. So for the tide from 1615 to 2345 , the range is 7.6 feet. So make a mark at the equivalent of 0.76 feet on your graph. Do the same for the tide from 2345 to 0530, based on its range of 8.9 feet. Your graph now looks like this.

Step 5: Assuming your tide follows a sine curve (a pretty safe bet, most of the time, in a region with two high tides per day), you can draw a smooth curve connecting dots and get a pretty close picture of what your tide looks like.

From this graph, you can figure out what the tidal height is at the moment you drop anchor; what it will be a maximum tide tonight, and what the low tide will be in the morning. If you anchor in a place where you need at least 2 feet of tide above the chart datum to avoid touching bottom, you know that you will need to up-anchor by 0400, or 0415 at the latest.

§42. Plotting Longitude

The conventional way to determine longitude on a VP-OS Universal Plotting Sheet is to use a set of dividers together with the scale in the lower right corner of the page. ${ }^{47}$

Figure 3.1
This is still a good method, and if you are comfortable with it, the by all means carry on. However, it is possible you may find it quicker to calculate longitudes using the scale of minutes on the Mark 1 Navigator's Slide Rule.

As you might imagine, there is a fixed, mathematical relationship between latitude and the width of a degree of longitude:

Width of degree of longitude in nautical miles $=\cos ($ latitude $) \times 60$.
This can be calculated graphically by using the scale of minutes on the backside of the Mark 1 Navigator's Slide Rule. Rotate it so its offset from horizontal is equal to your latitude.

Construct a plotting sheet for North 20°, West 70°. Let's assume that your DR is North 20° 08^{\prime}, West $69^{\circ} 23^{\prime}$, and your AP is North $20^{\circ} 00^{\prime}$, West $69^{\circ} 34^{\prime}$.

Center the scale on the Mark 1 at the center point of the plotting sheet, then rotate the rule by 20°. Make a mark next to the 23^{\prime} point on the Mark 1 , for your DR, and another at the 34' point, for your AP.

[^21]

Use your triangle to sort out your latitude, and position a mark for your DR. Use the triangle to extend your mark at 34^{\prime} down to 20° for your AP.

Now, to fix this concept in your head, let's do another problem. Assume your AP is at North $53^{\circ} 00^{\prime}$, West $145^{\circ} 49^{\prime}$. Rotate the ruler from horizontal by 53°. ${ }^{48}$ Draw a line down from 49' on the Mark 1 rule.

[^22]

INDEX

A
Abbreviations.. 1

G
Great Circle Route 5,40
M
Maximum Hull Speed 3, 33
Multiply 11, 14
N
Navigational Triangle 5, 40
P
Parts of the Slide Rule 9
Plotting Longitude 75
R
Reading the C \& D scales 9
S
Scope of a Given Universal Plotting Sheet 4, 38
Sight Reduction 5, 40
Speed, Time and Distance 2, 21

T

Tacking Downwind3,59Trigonometry and Mental Math 8, 47, 69

BIBLIOGRAPHY

Bowditch, Nathaniel, et al, The American Practical Navigator (Bethesda: National Imagery and Mapping Agency, US Government), 2002. ${ }^{49}$

Doane, Charles, Crunching Numbers: Hull Speed \& Boat Length, http://tinyurl.com/jxynsw6 (retrieved 11 March 2016)

Cutler, Thomas Jay, Dutton's Nautical Navigation, (Annapolis: Naval Institute Press), $15^{\text {th }}$ ed. 2004.

Husick, Charles B., Chapman Piloting \& Seamanship (New York: Hearst Books), $67^{\text {th }}$ ed. 2009.

Gentry, Arvel, "Downwind Tacking", SEA and Pacific Motor Boat, February, 1970. (Retrieved 01 March 2016 from http://arvelgentry.jimdo.com/).

NavList: A Community Devoted to the Preservation and Practice of Celestial Navigation and Other Methods of Traditional Position-Finding (http://fer3.com/arc). ${ }^{50}$

Podmore, J.C., The Slide Rule for Sea and Air Navigation (Glassgow: Brown, Son \& Ferguson, Limited), $3^{\text {rd }}$ ed. 1974.

Rousmaniere, John, The Annapolis Book of Seamanship (New York: Simon and Schuster), 1989.

[^23]
ABOUT THE AUTHOR

Bill Gates and Bob Goethe are only two years apart in age, but the similarities stop there. Bill built Microsoft, a company everybody has heard of. Bob built TEOG, a company nobody has heard of. In the 1980s, when WordPerfect was the king of the hill in productivity software, Bill was selling MS Word...a program that was far ahead of its time. Bob has brought out the Mark 1 slide rule forty years after the electronic calculator wiped out the entire slide rule market. ${ }^{51}$

It is this difference in entrepreneurial acumen that goes a long way in explaining why Bill can write a personal check for $\$ 30$ billion, while Bob can afford to order in pizza on Monday nights.

Still, Bob says, creating a specialty slide rule is like painting landscapes in oil. The person who does so paints not because it will make him any money. ${ }^{52}$ And his paintings are never as quickly or accurately rendered as a single snapshot taken with his iPhone.

No...a person paints landscapes because there is something in it that nourishes his inner man.

At the bottom, there is an esthetic appeal to mathematics, engineering, and navigation that is every bit as real as the esthetic appeal of painting a landscape or creating a sculpture in marble.

Bob is the kind of person who, during an Alberta January blizzard, sits and looks out his living room window, pondering ${ }^{53}$ how on earth pilots and sailors navigated across oceans back in $1931 .{ }^{54}$

[^24]

He is a computer programmer by trade, but in his personal life is a bit of a Luddite, liking sails and wind more than diesel fuel, ${ }^{55}$ and sextants more than GPS devices.

That said, when sailing offshore he has enjoyed not only using his sextant and slide rule, but a navigation station that employs Expedition software to tie together the GPS, AIS, radar, HF radio, weather-fax, downloads of GRIB weather files, and polars for his vessel to calculate, hour-by-hour, optimum courses to sail over the next 36 hours.

[^25]
[^0]: ${ }^{1}$ If you are not quite sure what this means, see §20.

[^1]: ${ }^{2}$ i.e. the VP-OS sheet published by Weems and Plath, or one that uses precisely the same scale. ${ }^{3}$ You can certainly use this equation for occasions when you can observe the high water line below the object (WITH corrections for dip and IE, but WITHOUT corrections for refraction or earth curvature). But to be accurate, the object needs to be very close to the shoreline (like a lighthouse). If it is a hilltop or some landmark that is inshore by some distance, then this equation will become progressively more inaccurate. Once I get within 3 nm of shore, there are generally a number of navigational aids visible. I prefer to use magnetic bearings with those aids rather than distance-by-vertical-angle.

[^2]: ${ }^{4}$...because, you know, navigational instruments are so dangerous. My white-haired, 85 year old mother even had her cuticle scissors seized by an airport security person.

 But I came to realize that this was only prudent, since my mom could have been a member of Al-Oughtrêd, a ruthless terrorist organization comprised of German grandmothers from Pennsylvania and Norwegian grandmothers from Minnesota. They have been known to break through the armored door to the cockpit with no more than fingernail clippers, forcing the pilots to land in Somalia.

 In 2014, Al-Oughtrêd began actively recruiting younger members from the ranks of the American Association of Retired People (AARP). So if you are a navigator over 50 with dividers in your carry on luggage, you are liable to be profiled as a terrorist. If you have an AARP membership card, prepare for a strip search.

 Oughtrêdis are so feared by jihadists that just the mention of the name "Al-Oughtrêd" can make members of Al-Qaeda and AI-Shabaab pee in their pants. And the possibility of actually meeting an Oughtrêdi is terrifying enough that members of ISIS will leave skid marks on their white robes.

 In fact, it was a chance encounter with a French grandmother from Vermont at a Libyan training camp that led to an "incident" with an entire group of 87 ISIS members at once. To make matters worse, there was a CNN cameraman present and the images went viral.

 It was this embarrassment that led to the current fashion of ISIS members wearing black garments. Much, much scarier if you can't see the brown stains.

[^3]: ${ }_{6}^{5}$ https://en.wikipedia.org/wiki/Slide rule, retrieved 03 March 2016.
 ${ }^{6}$ The California scientists with NASA were all using metric units in their calculations, while the propulsion engineers in Colorado were all using US-customary (foot-pound) measurements in theirs. Nobody noticed that the navigational software in the spacecraft was confused until it was too late.

[^4]: ${ }^{77}$ This is the height of the light itself, not of the structure that houses the light. Also note, to be accurate, you must take the state of the tide into account to determine the height of the light above sea level at this moment.

[^5]: ${ }^{8}$ In my own testing, it was seldom of any value to go beyond four iterations. By that time, you are getting a good fix, and are starting to circle about a central value.
 ${ }^{9}$ http://tinyurl.com/cbp6h5d (retrieved 05 March 2015).

[^6]: ${ }^{10}$ This is the same equation, but with no correction for refraction or curvature of the earth, that you use when you are within just a few miles of shore, and can measure the angular height between the top of a lighthouse and the high-water mark.

[^7]: ${ }^{11}$ Retrieved 11 March 2016.

[^8]: ${ }^{12}$ Cf. Husick, Charles B., Chapman Piloting \& Seamanship (New York: Hearst Books), 2009. Chapter 18.

[^9]: ${ }^{13}$ This is one of the calculations you can make with a slide rule, with almost no practice at all, more quickly than you can with an electronic calculator. The technique is so easy and fast, it may well become a favorite in your navigational toolbox.
 ${ }^{14}$ It is often the case that lights are on points of land that have a region of shoals extending some distance offshore from that point.
 ${ }^{1515}$ While the quickest method to solve this problem is with your pencil and straightedge, if you are utterly addicted to navigational math, you can calculate your distance off - if you continue your current course - with this equation:

 Distance-off-when-abeam $=$ Distance-off-at-Bearing-Point- $2 \times \cos \left(90^{\circ}\right.$ minus bearing-off-the-bow-at-point-2)
 ${ }^{16}$ http://tinyurl.com/hd6t7zi (retrieved 04 March 2016).

[^10]: ${ }^{18}$ I can also do it with an electronic calculator, of course. But there is no time savings for me. It takes 4 minutes to work out on a calculator, and 4 minutes to work out with a slide rule. It is more fun to use the slide rule.
 ${ }^{19}$ The earth is big enough that a rhumb line course is virtually identical to a great circle course for distances less than 200 nm . So a once-a-day recalculation of the course to sail will work out just fine. Frankly, those who use gnomonic charts often only calculate their course changes for once every 5° of longitude. The man with a slide rule in his hand will steer smaller.

[^11]: ${ }^{22}$ If you are fuzzy on "meridian angle", it is the difference between your longitude and that of your destination, expressed as a value from 0° to 180°, going either east or west. Your location, your destination, and the north pole are the three points of the navigational triangle you are trying to solve.

 If your entire training in celestial navigation involved the LHA from 0° to 360°, measured westward, then you have to reorganize your thinking a bit to use either a slide rule or a calculator to solve the triangle.

[^12]: ${ }^{23}$ If you are following along with your electronic calculator, you are saying, "That's not quite right." Correct! This is what is called "slide rule accuracy." But for a calculation method that involves no batteries, this is not bad.

[^13]: ${ }^{24}$ Look at the link to the Bygrave instructional form at Gary LaPook's website at http://tinyurl.com/BygraveInstructions for "Special Instructions".

[^14]: ${ }^{25}$ I worked this sample problem fully out on the slide rule before going to Henning's web site to check my results. Frankly, I would have been happy just to be in the right neighborhood with my answer. Differences of 10 or 20 nm , when worked on a 10" slide rule, are much more typical. ${ }^{26}$ The graphics program I used to design the Mark 1, CoreIDraw, will let you drive its output with Visual Basic code. I have used Corel Draw for years, and I have coded software for years. But this was the first time I attempted to wed those two things together.
 ${ }^{27}$ Now that I have tweaked Henning's web page so that it is easier to use in checking slide rule results, I can also establish default values for fields to make it easier to set up several similar problems in a row. I may do a series of problems to try and determine where the sweet spots lie. If

[^15]: ${ }^{35}$ You will slow down as a big wave smashes into your bow.

[^16]: ${ }^{36}$ If you think that this is not quite up to what the equation for maximum hull speed would suggest, you need to recall that the hull speed equation deals in LWL (length at water line) and not LOA (length over all). The TEOG 40 has a LOA of 40 feet. Its LWL is shorter.
 ${ }^{37}$ You don't need to collect all your data at once. Also note that there may be a heeling error, as the relative positions of the engine and compass change. Compass deviation issues can lead you into the deep end of the pool, so to speak. But keep in mind that if you had no deviation card whatsoever last week, what you are doing today is a genuine improvement, even if it is not perfect.
 ${ }^{38}$ http://www.pbo.co.uk/expert-advice/how-to-swing-a-compass-17845 gives a method that assumes your hand-bearing compass is unaffected by any deviation. This constitutes an interesting little leap of faith.
 ${ }^{39}$ I spent a couple of weeks on a vessel that had two conventional compasses in the cockpit, plus a digital compass. No two of these compasses agreed with each other, and no single compass agreed with the GPS. The maximum differences between reported headings amounted to 35° on certain courses.

 GPS is of some value in determining compass deviation, of course. But if we are sailing on salt water, then most of us, most of the time, are sailing across a current of not-precisely-known direction and not-precisely-known speed. GPS tells you how the boat is moving without regard for

[^17]: which way the bow is pointing. To really dial in your compass deviation, there is no substitute for a celestial object.
 ${ }^{40}$ Bowditch (2002). p. 273.

[^18]: ${ }^{41}$ Typically, you cannot read a binnacle compass with any more accuracy than $\pm 1^{\circ}$ of so. Hence, you will round your numbers to the nearest degree. If your steering compass' design is such that you can read it only to the nearest 5°, then just do the best you can.
 ${ }^{42}$ On both US and Canadian government websites, the scientists that calculate earth magnetism talk in terms of "magnetic declination". The hydrographic offices that publish nautical charts describe the same phenomenon as "magnetic variation."

[^19]: ${ }^{43}$ The top half values of the ST scale are identical to the To scale values. I could have as easily named To as STo or some other similar designation.

 However it was named, the scale needed to be up on the body to facilitate easy calculation of great circle routes.
 ${ }^{44}$ Within the limits of slide rule accuracy, sine and tangent values are identical for any angles less than $5^{\circ} 44^{\prime}$.
 ${ }^{45}$ Because this ruler has been optimized to make the Bygrave equations for sight reduction and great circle calculations easy and quick, all of the possible tangent scales appear both on the slide and on the body.

[^20]: ${ }^{46}$ When I lived in Japan, I owned a 13 ' dinghy that I stored on a hand-trailer. You can see a configuration similar to what I had about half way down the page at http://tinyurl.com/gmfzfl2. The boat ramp I used was concrete, and had a drop off at the end of it. As long as the tide was above a certain level, I could launch and retrieve my boat easily. If it was below that level, it was impossible to haul the steel trailer up, together with 280 lb . of boat on it, over the end of the concrete ramp. In that case, I would have to wait for the tide to go to its minimum, then come back up before I could retrieve my boat.
 The local authority published tide tables in a little book that would fit in your hip pocket. I took to carrying a log book that was also small enough to fit in my hip pocket. Using the tide chart booklet itself as a straight edge, I became good enough at creating a graph of intermediate tide heights in my log book that I could predict the critical tide height for dinghy retrieval to within 5 or 10 minutes.

[^21]: ${ }^{47}$ This discussion assumes that you are using a VP-OS sheet published by Weems and Plath, or one that uses precisely the same scale.

[^22]: ${ }^{48}$ Be careful to note this does not mean rotating the ruler until it lines up with 53° on the compass rose, but 53° away from horizontal.

[^23]: ${ }^{49}$ Bowditch first published his handbook of navigation in 1802. It was updated and republished several times in his lifetime, and later by his son. In 1867, the copyright and plates were purchased by the Hydrographic Office of the US Navy. It has been published, through more than 75 editions, by the US government ever since. This work is the gold standard of navigational mathematics adopted for this manual. So for instance, when Bowditch makes the jump to metric units (meters instead of feet; cm instead of inches), this user manual will also make the jump to metric.
 ${ }^{50}$ For anybody interested in traditional navigation, this is an enormously important resource. Do a search from there on "Bygrave" and you can review an extensive discussion - spanning many years - on different mathematical approaches to solving the navigational triangle. You can even access a statistical analysis of the accuracy of Bygrave's cosine/tangent equations compared to the more-conventional cosine/sine equations, as solved using a 10" straight slide rule.
 Members of this group have used PVC tubing to construct their own cylindrical slide rules, similar to the original Bygrave, and there are hundreds of postings related to Amelia Earhart's 1937 navigation across the Pacific Ocean. Further, this is really the ONLY place where you can dialog with people who, after they have gone to see The Martian (2015) with Matt Damon, muse aloud about the technical requirements for performing celestial navigation on Mars.

 It was this group's discussion of the Bygrave formulas, in fact, that helped to determine which equations would be used in this volume for the solution of great circles/sight reduction. This in turn shaped the design of the Mark 1 Navigator's Slide Rule, as it was optimized to solve these particular equations.

[^24]: ${ }^{51}$ Keuffel and Esser Co. presented the final slide rule they manufactured to the Smithsonian Institute in 1976. The Mark 1 you hold in your hands is one of only a handful of slide rules manufactured over the last 40 years.

 The learning curve for using a slide rule was always steep, and it could manage only 3 or 4 significant digits in its answer. The electronic calculator was superior in so many ways.

 You may have already realized, however, that while calculators are accurate to at least 8 significant digits, the last 5 of those digits often make little or no practical difference in navigation. The Empire State Building, the Golden Gate Bridge, and the Saturn 5 rocket that put men on the moon were all built with just 3 significant digits.
 ${ }^{52}$ Quite the contrary. If he really wanted to make money with a brush in hand, his best bet would be to offer to redo the siding of his local tattoo parlor.
 ${ }^{53}$ Playing with a slide rule on Sunday afternoon is about as practical/useful as watching football on TV, which Bob also enjoys. We do the one for the same reason we do the other - for fun.
 ${ }^{54}$ https://en.wikipedia.org/wiki/Francis Chichester\#Air pilot The mathematics for sight reduction/great circle calculation presented in this manual are fundamentally the same as what Chichester used. He, however, used a cylindrical slide rule, which has an even more arcane role in navigational history than the straight slide rule.

[^25]: 55 "An outstanding day of sailing is one where you can leave dock in the morning and finish at another anchorage that night without once turning on your engine."

